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Transformer
“Attention is All you Need”, 

Vaswani et al., NeurIPS 2017



Problems?
• If you implement your own Transformer, you may find problems with training stability: 

• NO warmup ==> NO convergence 

• WITH warmup ==> (sometimes) NO convergence 

• (We show the problem lies in the residual connections) 

• If you care about low-resource NMT (…or SLT): 

• Previous works on Transformer training focuses on high-resource settings (Vaswani 
et al. 2017, Shazeer and Stern 2018, Popel and Bojar 2018, Chen et al. 2018…) 

• Can we improve Transformer performance in low-resource NMT? 

• (Yes, via simple changes to normalization)



Stability: PreNorm vs. PostNorm
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“Identity Mappings in 
Deep Residual Networks”, 

He et al., ECCV 2016

“Attention is All you 
Need”, Vaswani et al., 

NeurIPS 2017
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PreNorm (ResNet)

Residual connections 
or “identity mappings” 

 

“contribution” of  to 

xl+1 = xl + Fl(xl)

xl y = xl



PreNorm (ResNet)
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Suppose we apply  to , i.e., 

 

“contribution” of  to   

 

 

   should always be set to 1 (identity)

λl xl

xl+1 = λlxl + Fl(xl)

x y = (
L−1

∏
i=l

λi) xl

λi > 1, ∏λi ≫ 1 ⇒ gradient explosion

λi < 1, ∏λi ≪ 1 ⇒ gradient vanishing

∴ λi
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LayerNorm

PostNorm (Transformer)

Inserting LayerNorms along the 
residual path is similar to introducing 

, which causes Transformer’s 
instability. 
λi ≠ 1

(“Learning Deep Transformer Models for 
Machine Translation”, Wang et al., ACL 2019)



Stability: PreNorm vs. PostNorm

• Mentioned in various works (Chen et al. 2018, 
Wang et al. 2019, Parisotto et al. 2019) 

• Implemented in popular toolkits (tensor2tensor, 
fairseq, sockeye) 

• Discussed by practitioners: https://tunz.kr/post/4, 
https://github.com/tnq177/witwicky 

Their conclusion: PreNorm allows greater depth 
and safer training across datasets.
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Stability: …w.r.t. optimization?

 Warmup: initial, gradual 
increase of learning rate. 

Empirically tuned.



Stability: …w.r.t. optimization?

Hypothesis: Warmup is 
needed to safely stabilize 
(PostNorm’s) LayerNorm 
gradients.



Stability: Warmup

               

PreNorm works as # warmup steps —> 0! 

PostNorm does not. Can we mitigate its gradients in another way?



Stability: Weight initialization
In the beginning, Transformer has activations of expected norm   

Idea: Let’s shrink the weights to compensate. 
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Attention sublayer’s weights:  

Feedforward sublayer’s weights:  

Since the feedforward’s weights are smaller, we shrink the attention 
weights to that (a scale factor of ~0.63). 

We propose SmallInit: All weights initialized to  

Wi ∼ 𝒩 (0,
2

D + D )
Wi ∼ 𝒩 (0,

2
D + 4D )

Wi ∼ 𝒩 (0,
2

D + 4D )

Stability: Weight initialization



Stability: Weight initialization

Now, PostNorm works as # warmup steps —> 0 too! 

SmallInit regains stability for PostNorm. Let’s use it moving forward. 

PreNorm continues to work in both settings.



Stability: Weight initialization

With just one Small(Init) trick: 

• PreNorm works as # warmup steps —> 0 

• PostNorm works as # warmup steps —> 0 

Can we abandon warmup? Stay tuned.



Experiments
• IWSLT 2015 en->vi, 4 TED Talks pairs from Qi et al., 2018 

• Data sizes from 10k to 200+k sentence pairs 

• Models are base Transformers 

• Joint-language 8k BPE, 8k-step warmup, word dropout, tied input-outputs 
for strong baselines (+SmallInit so that PostNorm works.)



Low-resource

• Transformers are over-parameterized and over-confident 

• (e.g., all our models use dropout of 0.3+, label smoothing of 0.1) 

• Other works have pruned attention heads, tied self-attention 
layers, used monolingual pretraining, etc. 

• Can we do something at the normalization steps?



Low-resource: FixNorm

More frequent words have larger embedding norms than semantically-similar 
rare words. Here the model mistranslates “Fauci” to “Chan”.



Low-resource: FixNorm

Solution: Fix word embedding norm to some :  (Nguyen and 

Chiang, 2018), but with  learnable

g e ↦ g
e

∥e∥
g



Low-resource: Layer normalization

LayerNorm (Ba et al., 2016) stems from BatchNorm (Ioffe and Szegedy, 
2015) 

Ioffe and Szegedy, 2015: BatchNorm helps by solving the internal covariate 
shift 

Santurkar et al., 2018: BatchNorm actually helps by smoothing the loss 
landscape. e.g., normalizing by other statistics work too 

Zhang and Sennrich, 2019: propose RMSNorm which normalizes by root 
mean square. It’s faster than LayerNorm and achieves comparable results



Low-resource: ScaleNorm

LayerNorm:  

RMSNorm:  

We propose ScaleNorm: 

x̄i =
xi − μ

σ
ai + bi

x̄i =
xi

RMS(x)
ai, RMS(x) =

1
n

n

∑
i=1

x2
i

x̄ = g
x

∥x∥



Low-resource: ScaleNorm
ScaleNorm is similar to FixNorm but on the inputs, not on the embedding 

ScaleNorm has no centering, no mean-shifting after scaling, 1 scale 
parameter per layer 

Speed: ScaleNorm > RMSNorm > LayerNorm 

ScaleNorm+FixNorm at final output layer = maximizing cosine distance 

Nguyen and Chiang (2018) used a fixed  for ScaleNorm+FixNorm which 
improved low-resource NMT

g
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Experiments: Learning rate

Do we really need warmup? 

Does the good old “decay when dev BLEU doesn’t improve” still 
work? 

Can we train low-resource on small batch sizes (4096 tokens/batch) 
with very high learning rate?



Experiments: Learning rate



Experiments: Learning rate

(we can often get away without warmup, but warmup is still useful)
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Experiments: Learning rate

Do we really need warmup? No! 

Does the good old “decay when dev BLEU doesn’t improve” still 
work? Yes! 

Can we train low-resource on small batch sizes (4096 tokens/batch) 
with very high learning rate? Yes!



Experiments: PreNorm vs. PostNorm (again)

Can SmallInit help PostNorm without warmup? No :(
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High resource (a different story)

We use WMT 2014 en-de, via fairseq. PreNorm degrades performance!



High resource (a different story)

High-resource often uses large batch size which has more stable gradients. 
This could help solving the instability problem. 

ScaleNorm + FixNorm achieves comparable results 

ScaleNorm is faster than LayerNorm 

We recommend always replacing LayerNorm with ScaleNorm+FixNorm 

(The PreNorm vs. PostNorm story is not finished!)



Analysis: Perfomance curves



Analysis: Gradients



Analysis: Learned -valuesg
x̄ = g

x
∥x∥



Analysis: Label smoothing

x̄ = g
x

∥x∥



Conclusion

• We propose 3 changes to Transformer: PreNorm + FixNorm + ScaleNorm 

• Significantly improves low-resource, Transformer-based NMT 

• Comparable on high-resource NMT (FixNorm+ScaleNorm) 

• Faster



https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1
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Questions?
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