
Transformers without Tears:
Improving the Normalization

of Self-Attention
Toan Q. Nguyen* Julian Salazar*

IWSLT 2019, Hong Kong
paper: https://arxiv.org/pdf/1910.05895.pdf

code: https://github.com/tnq177/transformers_without_tears

*equal contribution

University of Notre Dame Amazon AWS AI

https://arxiv.org/pdf/1910.05895.pdf
https://github.com/tnq177/transformers_without_tears

Transformer
“Attention is All you Need”,

Vaswani et al., NeurIPS 2017

Problems?
• If you implement your own Transformer, you may find problems with training stability:

• NO warmup ==> NO convergence

• WITH warmup ==> (sometimes) NO convergence

• (We show the problem lies in the residual connections)

• If you care about low-resource NMT (…or SLT):

• Previous works on Transformer training focuses on high-resource settings (Vaswani
et al. 2017, Shazeer and Stern 2018, Popel and Bojar 2018, Chen et al. 2018…)

• Can we improve Transformer performance in low-resource NMT?

• (Yes, via simple changes to normalization)

Stability: PreNorm vs. PostNorm

x

Normalization

sublayer

ResNet
(PreNorm)

x

sublayer

Transformer
(PostNorm)

Normalization

“Identity Mappings in
Deep Residual Networks”,

He et al., ECCV 2016

“Attention is All you
Need”, Vaswani et al.,

NeurIPS 2017

R
es

id
ua

l P
at

h

1

x

2

...........

n

y

PreNorm (ResNet)

Residual connections
or “identity mappings”

“contribution” of to

xl+1 = xl + Fl(xl)

xl y = xl

PreNorm (ResNet)

R
es

id
ua

l P
at

h

1

x

2

...........

n

y

Suppose we apply to , i.e.,

“contribution” of to

 should always be set to 1 (identity)

λl xl

xl+1 = λlxl + Fl(xl)

x y = (
L−1

∏
i=l

λi) xl

λi > 1, ∏λi ≫ 1 ⇒ gradient explosion

λi < 1, ∏λi ≪ 1 ⇒ gradient vanishing

∴ λi

1

x

2

...........

LayerNorm

LayerNorm

PostNorm (Transformer)

Inserting LayerNorms along the
residual path is similar to introducing

, which causes Transformer’s
instability.
λi ≠ 1

(“Learning Deep Transformer Models for
Machine Translation”, Wang et al., ACL 2019)

Stability: PreNorm vs. PostNorm

• Mentioned in various works (Chen et al. 2018,
Wang et al. 2019, Parisotto et al. 2019)

• Implemented in popular toolkits (tensor2tensor,
fairseq, sockeye)

• Discussed by practitioners: https://tunz.kr/post/4, 
https://github.com/tnq177/witwicky

Their conclusion: PreNorm allows greater depth
and safer training across datasets.

x

Normalization

sublayer

ResNet
(PreNorm)

x

sublayer

Transformer
(PostNorm)

Normalization

https://tunz.kr/post/4
https://github.com/tnq177/witwicky

Stability: …w.r.t. optimization?

 Warmup: initial, gradual
increase of learning rate.

Empirically tuned.

Stability: …w.r.t. optimization?

Hypothesis: Warmup is
needed to safely stabilize
(PostNorm’s) LayerNorm
gradients.

Stability: Warmup

PreNorm works as # warmup steps —> 0!

PostNorm does not. Can we mitigate its gradients in another way?

Stability: Weight initialization
In the beginning, Transformer has activations of expected norm

Idea: Let’s shrink the weights to compensate.

≈ D

L2
 N

or
m

0

7.5

15

22.5

30

Uniform vector [-0.1, 0.1] Uniform vector [-0.5, 0.5] Transformer’s input (beginning) LayerNorm’s output (beginning)

22.62722.627

6.528

1.306

Attention sublayer’s weights:

Feedforward sublayer’s weights:

Since the feedforward’s weights are smaller, we shrink the attention
weights to that (a scale factor of ~0.63).

We propose SmallInit: All weights initialized to

Wi ∼ 𝒩 (0,
2

D + D)
Wi ∼ 𝒩 (0,

2
D + 4D)

Wi ∼ 𝒩 (0,
2

D + 4D)

Stability: Weight initialization

Stability: Weight initialization

Now, PostNorm works as # warmup steps —> 0 too!

SmallInit regains stability for PostNorm. Let’s use it moving forward.

PreNorm continues to work in both settings.

Stability: Weight initialization

With just one Small(Init) trick:

• PreNorm works as # warmup steps —> 0

• PostNorm works as # warmup steps —> 0

Can we abandon warmup? Stay tuned.

Experiments
• IWSLT 2015 en->vi, 4 TED Talks pairs from Qi et al., 2018

• Data sizes from 10k to 200+k sentence pairs

• Models are base Transformers

• Joint-language 8k BPE, 8k-step warmup, word dropout, tied input-outputs
for strong baselines (+SmallInit so that PostNorm works.)

Low-resource

• Transformers are over-parameterized and over-confident

• (e.g., all our models use dropout of 0.3+, label smoothing of 0.1)

• Other works have pruned attention heads, tied self-attention
layers, used monolingual pretraining, etc.

• Can we do something at the normalization steps?

Low-resource: FixNorm

More frequent words have larger embedding norms than semantically-similar
rare words. Here the model mistranslates “Fauci” to “Chan”.

Low-resource: FixNorm

Solution: Fix word embedding norm to some : (Nguyen and

Chiang, 2018), but with learnable

g e ↦ g
e

∥e∥
g

Low-resource: Layer normalization

LayerNorm (Ba et al., 2016) stems from BatchNorm (Ioffe and Szegedy,
2015)

Ioffe and Szegedy, 2015: BatchNorm helps by solving the internal covariate
shift

Santurkar et al., 2018: BatchNorm actually helps by smoothing the loss
landscape. e.g., normalizing by other statistics work too

Zhang and Sennrich, 2019: propose RMSNorm which normalizes by root
mean square. It’s faster than LayerNorm and achieves comparable results

Low-resource: ScaleNorm

LayerNorm:

RMSNorm:

We propose ScaleNorm:

x̄i =
xi − μ

σ
ai + bi

x̄i =
xi

RMS(x)
ai, RMS(x) =

1
n

n

∑
i=1

x2
i

x̄ = g
x

∥x∥

Low-resource: ScaleNorm
ScaleNorm is similar to FixNorm but on the inputs, not on the embedding

ScaleNorm has no centering, no mean-shifting after scaling, 1 scale
parameter per layer

Speed: ScaleNorm > RMSNorm > LayerNorm

ScaleNorm+FixNorm at final output layer = maximizing cosine distance

Nguyen and Chiang (2018) used a fixed for ScaleNorm+FixNorm which
improved low-resource NMT

g

Experiments
BL

EU
 s

co
re

 d
iff

er
en

ce

-0.3

0

0.3

0.6

0.9

1.2

IWSLT 2015 En-Vi Average of 5 IWSLT tasks

PostNorm+LayerNorm PreNorm+LayerNorm PreNorm+LayerNorm+FixNorm
PreNorm+ScaleNorm+FixNorm

Experiments
BL

EU
 s

co
re

 d
iff

er
en

ce

-5

-3.75

-2.5

-1.25

0

1.25

IWSLT 2015 En-Vi Average of 5 IWSLT tasks

Published baseline PostNorm+LayerNorm PreNorm+LayerNorm
PreNorm+LayerNorm+FixNorm PreNorm+ScaleNorm+FixNorm

Experiments: Learning rate

Do we really need warmup?

Does the good old “decay when dev BLEU doesn’t improve” still
work?

Can we train low-resource on small batch sizes (4096 tokens/batch)
with very high learning rate?

Experiments: Learning rate

Experiments: Learning rate

(we can often get away without warmup, but warmup is still useful)

D
ev

 B
LE

U
 s

co
re

28

28.3

28.6

28.9

29.2

IWSLT 2015 En-Vi Average of 5

InvSqrtDecay NoWarmup ValDecay InvSqrtDecay + 2 x LR

Experiments: Learning rate

Do we really need warmup? No!

Does the good old “decay when dev BLEU doesn’t improve” still
work? Yes!

Can we train low-resource on small batch sizes (4096 tokens/batch)
with very high learning rate? Yes!

Experiments: PreNorm vs. PostNorm (again)

Can SmallInit help PostNorm without warmup? No :(

W
M

T’
14

 E
n-

D
e

te
st

 B
LE

U

26.7

26.925

27.15

27.375

27.6
Published baseline
PreNorm+LayerNorm
PreNorm+FixNorm+ScaleNorm
PostNorm+LayerNorm
PostNorm+FixNorm+ScaleNorm

High resource (a different story)

We use WMT 2014 en-de, via fairseq. PreNorm degrades performance!

High resource (a different story)

High-resource often uses large batch size which has more stable gradients.
This could help solving the instability problem.

ScaleNorm + FixNorm achieves comparable results

ScaleNorm is faster than LayerNorm

We recommend always replacing LayerNorm with ScaleNorm+FixNorm

(The PreNorm vs. PostNorm story is not finished!)

Analysis: Perfomance curves

Analysis: Gradients

Analysis: Learned -valuesg
x̄ = g

x
∥x∥

Analysis: Label smoothing

x̄ = g
x

∥x∥

Conclusion

• We propose 3 changes to Transformer: PreNorm + FixNorm + ScaleNorm

• Significantly improves low-resource, Transformer-based NMT

• Comparable on high-resource NMT (FixNorm+ScaleNorm)

• Faster

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

Questions?

paper: https://arxiv.org/pdf/1910.05895.pdf
code: https://github.com/tnq177/transformers_without_tears

https://en.wikipedia.org/wiki/Transformer
https://arxiv.org/pdf/1910.05895.pdf
https://github.com/tnq177/transformers_without_tears

References
1.“Attention is all you need”, Vaswani et al., 2017

2.“Adafactor: Adaptive Learning Rates with Sublinear Memory Cost”, Shazeer and Stern, 2018

3.“Training tips for the Transformer model”, Popel and Bojar, 2018

4.“The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation”, Chen et al.,
2018

5.“Identity Mappings in Deep Residual Networks”, He et al., 2016

6.“Learning Deep Transformer Models for Machine Translation”, Wang et al., 2019

7.“On Layer Normalization in the Transformer architecture”, Anonymous, 2019

8.“Stabilizing Transformers for Reinforcement Learning”, Parisotto et al., 2019

9.“The Sockeye neural machine translation toolkit”, Hieber et al., 2018

10.“Tensor2Tensor for Neural Machine Translation”, Vaswani et al., 2018

11.“fairseq: A Fast, Extensible Toolkit for Sequence Modeling”, Ott et al., 2019

References
12. “Improving Lexical Choice in Neural Machine Translation”, Nguyen and Chiang, 2018

13. “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift”, Ioffe
and Szegedy, 2015

14. “How does batch normalization help optimization?”, Santurkar et al., 2018

15. “Layer Normalization”, Ba et al., 2016

16. “Root Mean Square Layer Normalization”, Zhang and Sennrich, 2019

17. “Effective approaches to attention-based neural machine translation”, Luong et al., 2015

18. “Deep Sparse Rectifier Neural Networks”, Glorot et al., 2011

19. “Deep Residual Learning for Image Recognition”, He et al., 2015

20. “Residual Networks Behave Like Ensembles of Relatively Shallow Networks”, Veit et al., 2016

21. “When and Why are pre-trained word embeddings useful for Neural Machine Translation”, Qi et al.,
2018

