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Transformer

“Attention is All you Need”,
Vaswani et al., NeurlPS 2017
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Problems?

e If you implement your own Transformer, you may find problems with training stability:
e NO warmup ==> NO convergence
e WITH warmup ==> (sometimes) NO convergence
e (We show the problem lies in the residual connections)

e If you care about low-resource NMT (...or SLT):

e Previous works on Transformer training focuses on high-resource settings (Vaswani
et al. 2017, Shazeer and Stern 2018, Popel and Bojar 2018, Chen et al. 2018...)

e Can we improve Transformer performance in low-resource NMT?

e (Yes, via simple changes to normalization)



Stability: PreNorm vs. PostNorm
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Residual Path

PreNorm (ResNet)

y

Residual connections
or “identity mappings”

X1 = X+ Fi(x)

“contribution” of x; to y = X
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PreNorm (ResNet)

Suppose we apply 4, to x;, i.e.,

X1 = Ax+ Fi(x)

L1
“contribution” of xtoy = (H/Il-) X
i=l

A > 1, Hxll- > 1 = gradient explosion

A <1, H/Ii < | = gradient vanishing

.. 4; should always be set to 1 (identity)




PostNorm (Transformer)

)(>\, LayerNorm
L Inserting LayerNorms along the

residual path is similar to introducing

A; # 1, which causes Transformer’s
instability:.

> N

X A/ LayerNorm

1 (“Learning Deep Transformer Models for
Machine Translation”, Wang et al., ACL 2019)




Stability: PreNorm vs. PostNorm

e Mentioned in various works (Chen et al. 2018,
Wang et al. 2019, Parisotto et al. 2019) 1

sublayer

e Implemented in popular toolkits (tensor2tensor,
fairseq, sockeye) T

Normalization

e Discussed by practitioners: https://tunz.kr/post/4,
https://qgithub.com/tng177/witwick J

Their conclusion: PreNorm allows greater depth

X
and safer training across datasets. ResNet

(PreNorm)
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Learning rate

Stability: ...w.r.t. optimization?

0.0007 A — warmup
— cooldown
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increase of learning rate.
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Stability: ...w.r.t. optimization?

e

0.0006 -

o Hypothesis: Warmup is
§°'°°O4 needed to safely stabilize
§ 0.0003 (PostNorm'’s) LayerNorm

00002 - gradients.

0.0001 -

0.0000 -

0 2500 5000 7500 10000 12500 15000 17500 20000
# iterations



Stability: Warmup

# warmup steps
4k 8k 16k

POSTNORM fail fail 5.76
PRENORM 28.52 28.73 28.32

Xavier normal

Baseline

PreNorm works as # warmup steps —> O!

PostNorm does not. Can we mitigate its gradients in another way?



Stability: Weight initialization
In the beginning, Transformer has activations of expected norm =~ \5

Idea: Let's shrink the weights to compensate.

50
22.5

15

L2 Norm

Uniform vector [-0.1, 0.1] Uniform vector [-0.5, 0.5] Transformer’s input (beginning) LayerNorm's output (beginning)



Stability: Weight initialization

Attention sublayer’s weights: W. ~ /' | 0,
D+ D

Feedforward sublayer's weights: W. ~ /| O,
D+ 4D

Since the feedforward'’s weights are smaller, we shrink the attention
weights to that (a scale factor of ~0.63).

We propose Smalllnit: All weights initialized to W, ~ /4" | 0O,
D+ 4D



Stability: Weight initialization

# warmup steps
4k 8k 16k

POSTNORM fail fail 5.76
PRENORM 28.52 28.73 28.32

POSTNORM | 28.17 2820 28.62
PRENORM 28.26 28.44 28.33

Xavier normal

Baseline

SMALLINIT

Table 2: Development BLEU on en—vi using Xavier
normal 1nitialization (baseline versus SMALLINIT).

Now, PostNorm works as # warmup steps —> 0 too!
Smalllnit regains stability for PostNorm. Let's use it moving forward.

PreNorm continues to work in both settings.



Stability: Weight initialization

With just one Small(Init) trick:
e PreNorm works as # warmup steps —> 0
e PostNorm works as # warmup steps —> 0

Can we abandon warmup? Stay tuned.



Experiments

e IWSLT 2015 en->vi, 4 TED Talks pairs from Qi et al., 2018
e Data sizes from 10k to 200+k sentence pairs
e Models are base Transformers

o Joint-language 8k BPE, 8k-step warmup, word dropout, tied input-outputs
for strong baselines (+Smallinit so that PostNorm works.)

gl—>en | sk—en | en—vi | en—he | ar—en | average A

POSTNORM + LAYERNORM (published) 16.2 24.0 29.09 23.66 27.84 -4.05

POSTNORM + LAYERNORM (1) 18.47 29.37 31.94 27.85 33.39 +0.00
PRENORM + LAYERNORM (2) 19.09 29.45 31.92 28.13 33.79 +0.27




L Ow-resource

Transformers are over-parameterized and over-confident
(e.g., all our models use dropout of 0.3+, label smoothing of 0.1)

Other works have pruned attention heads, tied self-attention
layers, used monolingual pretraining, etc.

Can we do something at the normalization steps?



Low-resource: FixNorm

“query” vector “query” vector

' Anthony Fauci
e Margaret Chan Director NIAID
Anthony Fauci Former Director WHO

Director NIAID Margaret Chan
Former Director WHO

More frequent words have larger embedding norms than semantically-similar
rare words. Here the model mistranslates “Fauci” to “Chan”.




Low-resource: FixNorm

e
Solution: Fix word embedding norm to some ¢g: ¢ —» g¢—— (Nguyen and

lell
Chiang, 2018), but with g learnable

gl—-en | sk—en | en—vi | en—he | ar—en | average A

POSTNORM + LAYERNORM (published) 16.2 24.0 29.09 23.66 27.84 -4.05
POSTNORM + LAYERNORM (1) 18.47 29.37 31.94 27.85 33.39 +0.00

PRENORM + LAYERNORM (2) 19.09 29.45 31.92 28.13 33.79 +0.27

PRENORM + FIXNORM + LAYERNORM (3) 19.38 29.50 32.45 28.39 34.351 +0.61




Low-resource: Layer normalization

LayerNorm (Ba et al., 2016) stems from BatchNorm (loffe and Szegedy,
2015)

loffe and Szegedy, 2015: BatchNorm helps by solving the internal covariate
shift

Santurkar et al., 2018: BatchNorm actually helps by smoothing the loss
landscape. e.qg., normalizing by other statistics work too

Zhang and Sennrich, 2019: propose RMSNorm which normalizes by root
mean square. It's faster than LayerNorm and achieves comparable results



Low-resource: ScaleNorm

_ M TH
LayerNorm: X; = a; + b,
o
_ A
RMSNorm: x; = a;, RMS(x) =
RMS(x) \

X
We propose ScaleNorm: x = g——

x|



Low-resource: ScaleNorm

ScaleNorm is similar to FixNorm but on the inputs, not on the embedding

ScaleNorm has no centering, no mean-shifting after scaling, 1 scale
parameter per layer

Speed: ScaleNorm > RMSNorm > LayerNorm

ScaleNorm+FixNorm at final output layer = maximizing cosine distance

Nguyen and Chiang (2018) used a fixed g for ScaleNorm+FixNorm which
improved low-resource NMT



BLEU score difference

Experiments

B PreNorm+LayerNorm

B PostNorm+LayerNorm
1.2 B PreNorm+ScaleNorm+FixNorm

0.9
0.6
0.3

PreNorm+LayerNorm+FixNorm

O
N

IWSLT 2015 En-Vi

Average of 5 IWSLT tasks

gl—sen | sk—en | en—vi | en—he | ar—en | average A
POSTNORM + LAYERNORM (published) 16.2 24.0 29.09 23.66 277.84 -4.05
POSTNORM + LAYERNORM (1) 18.47 29.37 31.94 27.85 33.39 +0.00
PRENORM + LAYERNORM (2) 19.09 29.45 31.92 28.13 33.79 +0.27
PRENORM + FIXNORM + LAYERNORM (3) 19.38 29.50 32.45 28.39 34.357 +0.61
PRENORM + FIXNORM + SCALENORM (4) | 20.91% | 30.25%* | 32.79* | 28.44* | 34.15 +1.10



BLEU score difference

1.25

-1.25

-2.5

-3.75

Experiments

B Published baseline I PostNorm+LayerNorm
B PreNorm+LayerNorm+FixNorm [ PreNorm+ScaleNorm+FixNorm

PreNorm+LayerNorm

IWSLT 2015 En-Vi Average of 5 IWSLT tasks



Experiments: Learning rate

Do we really need warmup?

Does the good old “decay when dev BLEU doesn’t improve” still
work?

Can we train low-resource on small batch sizes (4096 tokens/batch)
with very high learning rate?



Experiments: Learning rate

0.0010 - —— |nvSqrtDecay
— |nvSqgrtDecay + 2 x LR
—— NoWarmup

0.0008 - < dev BLEU does not improve

0.0006 -

Learning rate

0.0004 -

0.0002 -

0.0000 -

0 20000 40000 60000 80000 100000
# iterations



Dev BLEU score

29.2

28.9

28.6

28.3

28

Experiments: Learning rate

. ValDecay B InvSgrtDecay + 2 x LR

B InvSqgrtDecay B NoWarmup

IWSLT 2015 En-Vi Average of 5

(we can often get away without warmup, but warmup is still useful)



Experiments: Learning rate

Do we really need warmup? No!

Does the good old “decay when dev BLEU doesn’t improve” still
work? Yes!

Can we train low-resource on small batch sizes (4096 tokens/batch)
with very high learning rate? Yes!



Experiments: PreNorm vs. PostNorm (again)

4 layers S layers 6 layers

POSTNORM 18.31 fails fails
PRENORM 28.33 28.13 28.32

Table 5: Development BLEU on en—vi using
NOWARMUP, as number of encoder/decoder layers in-
creases.

Can Smalllnit help PostNorm without warmup? No :(



WMT'14 En-De test BLEU

27.6

27.375

27.15

26.925

26.7

High resource (a different story)

B Published baseline
PreNorm+LayerNorm
PreNorm+FixNorm+ScaleNorm
PostNorm+LayerNorm
PostNorm+FixNorm+ScaleNorm

AN

We use WMT 2014 en-de, via fairseq. PreNorm degrades performance!



High resource (a different story)

High-resource often uses large batch size which has more stable gradients.
This could help solving the instability problem.

ScaleNorm + FixNorm achieves comparable results
ScaleNorm is faster than LayerNorm

We recommend always replacing LayerNorm with ScaleNorm+FixNorm

(The PreNorm vs. PostNorm story is not finished!)



Analysis: Perfomance curves

English-Vietnamese development BLEU
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Analysis: Learned g-values

B X
X =4
[x]]
Value of g for attention layers in encoder/decoder
—— ar-en
en—he 35
--=- en—vi
30
25
o
20

15

10
encoder decoder decoder-encoder

Value of g for non-attention layers in encoder/decoder

—— al'—en

en—he
en—vi

encoder

decoder



Analysis: Label smoothing

. X
X =4
[x]] J
Value of g for attention layers in encoder/decoder Value of g for non-attention layers in encoder/decoder
18 —— Label smoothing 120 —— Label smoothing
No label smoothing P No label smoothing
17 '/ 35
16 30
) o
15 25
14 20
13 15

encoder decoder decoder-encoder / encoder decoder



Conclusion

We propose 3 changes to Transformer: PreNorm + FixNorm + ScaleNorm
Significantly improves low-resource, Transformer-based NMT
Comparable on high-resource NMT (FixNorm+ScaleNorm)

Faster
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Subword Regularization
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Questions?

paper: https://arxiv.org/pdf/1910.05895.pdf
code: https://github.com/tnq177/transformers without tears
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