Transformers without Tears: Improving the Normalization of Self-Attention

Toan Q. Nguyen* <u>Julian Salazar*</u>

University of Notre Dame

IWSLT 2019, Hong Kong paper: <u>https://arxiv.org/pdf/1910.05895.pdf</u> code: <u>https://github.com/tnq177/transformers_without_tears</u>

Amazon AWS AI

*equal contribution

Transformer

"Attention is All you Need",

Problems?

- If you implement your own Transformer, you may find problems with training stability:
 - NO warmup ==> NO convergence
 - WITH warmup ==> (sometimes) NO convergence
 - (We show the problem lies in the residual connections)
- If you care about low-resource NMT (...or SLT):
 - Previous works on Transformer training focuses on high-resource settings (Vaswani et al. 2017, Shazeer and Stern 2018, Popel and Bojar 2018, Chen et al. 2018...)
 - Can we improve Transformer performance in low-resource NMT?
 - (Yes, via simple changes to normalization)

Stability: PreNorm vs. PostNorm

PreNorm (ResNet)

Residual connections or "identity mappings"

$$x_{l+1} = x_l + F_l(x_l)$$

"contribution" of x_l to $y = x_l$

PreNorm (ResNet)

Suppose we apply λ_l to x_l , i.e.,

$$x_{l+1} = \lambda_l x_l + F_l(x_l)$$

"contribution" of x to $y = \left(\prod_{i=l}^{L-1} \lambda_i\right) x_l$

 $\lambda_i > 1, \quad \prod \lambda_i \gg 1 \Rightarrow \text{gradient explosion}$ $\lambda_i < 1, \quad \prod \lambda_i \ll 1 \Rightarrow \text{gradient vanishing}$ $\therefore \lambda_i \text{ should always be set to 1 (identity)}$

PostNorm (Transformer)

Inserting LayerNorms along the residual path is similar to introducing $\lambda_i \neq 1$, which causes Transformer's

("Learning Deep Transformer Models for Machine Translation", Wang et al., ACL 2019)

Stability: PreNorm vs. PostNorm

- Mentioned in various works (Chen et al. 2018, Wang et al. 2019, Parisotto et al. 2019)
- Implemented in popular toolkits (tensor2tensor, fairseq, sockeye)
- Discussed by practitioners: <u>https://tunz.kr/post/4</u>, https://github.com/tng177/witwicky

Their conclusion: PreNorm allows greater depth and safer training across datasets.

Stability: ...w.r.t. optimization?

Warmup: initial, gradual increase of learning rate.

Empirically tuned.

Stability: ...w.r.t. optimization?

Hypothesis: Warmup is needed to safely stabilize (PostNorm's) LayerNorm gradients.

Stability: Warmup

Varian normal		# warmup steps			
Aavier normal		4k	8k	16k	
Baseline	POSTNORM PreNorm	fail 28.52	fail 28.73	5.76 28.32	

PreNorm works as # warmup steps —> 0!

PostNorm does not. Can we mitigate its gradients in another way?

Stability: Weight initialization

In the beginning, Transformer has activations of expected norm $pprox \sqrt{D}$

Idea: Let's shrink the weights to compensate.

Since the feedforward's weights are smaller, we shrink the attention weights to that (a scale factor of ~0.63).

Stability: Weight initialization Attention sublayer's weights: $W_i \sim \mathcal{N}\left(0, \frac{2}{D+D}\right)$ Feedforward sublayer's weights: $W_i \sim \mathcal{N}\left(0, \frac{2}{D+4D}\right)$

We propose **SmallInit**: All weights initialized to $W_i \sim \mathcal{N}\left(0, \frac{2}{D+4D}\right)$

Stability: Weight initialization

Variar normal		# warmup steps			
Aaviel normal		4k	8k	16k	
Baseline	PostNorm	fail	fail	5.76	
	PreNorm	28.52	28.73	28.32	
SmallInit	PostNorm	28.17	28.20	28.62	
	PreNorm	28.26	28.44	28.33	

Table 2: Development BLEU on $en \rightarrow vi$ using Xavier normal initialization (baseline versus SMALLINIT).

Now, PostNorm works as # warmup steps —> 0 too!

SmallInit regains stability for PostNorm. Let's use it moving forward.

PreNorm continues to work in both settings.

Stability: Weight initialization

With just one Small(Init) trick:

- PreNorm works as # warmup steps —> 0
- PostNorm works as # warmup steps —> 0
- Can we abandon warmup? Stay tuned.

Experiments

- IWSLT 2015 en->vi, 4 TED Talks pairs from Qi et al., 2018 • Data sizes from 10k to 200+k sentence pairs
- Models are base Transformers
- Joint-language 8k BPE, 8k-step warmup, word dropout, tied input-outputs for strong baselines (+SmallInit so that PostNorm works.)

	gl→en	∣sk→en	en→vi	en→he	ar→en	average Δ
POSTNORM + LAYERNORM (published)	16.2	24.0	29.09	23.66	27.84	-4.05
POSTNORM + LAYERNORM (1) PRENORM + LAYERNORM (2)	18.47 19.09	29.37 29.45	31.94 31.92	27.85 28.13	33.39 33.79	+0.00 +0.27

Low-resource

- Transformers are over-parameterized and over-confident
- (e.g., all our models use dropout of 0.3+, label smoothing of 0.1)
- Other works have pruned attention heads, tied self-attention layers, used monolingual pretraining, etc.
- Can we do something at the normalization steps?

Low-resource: FixNorm

"query" vector

More frequent words have larger embedding norms than semantically-similar rare words. Here the model mistranslates "Fauci" to "Chan".

Low-resource: FixNorm

Solution: Fix word embedding norm Chiang, 2018), but with g learnable

	gl→en	∣sk→en	en→vi	en→he	ar→en	average Δ
POSTNORM + LAYERNORM (published)	16.2	24.0	29.09	23.66	27.84	-4.05
POSTNORM + LAYERNORM (1)	18.47	29.37	31.94	27.85	33.39	+0.00
PRENORM + LAYERNORM (2)	19.09	29.45	31.92	28.13	33.79	+0.27
PRENORM + FIXNORM + LAYERNORM (3)	19.38	29.50	32.45	28.39	34.35 [†]	+0.61

to some
$$g: e \mapsto g \frac{e}{\|e\|}$$
 (Nguyen and

Low-resource: Layer normalization

2015)

shift

landscape. e.g., normalizing by other statistics work too

LayerNorm (Ba et al., 2016) stems from BatchNorm (loffe and Szegedy,

Ioffe and Szegedy, 2015: BatchNorm helps by solving the internal covariate

- Santurkar et al., 2018: BatchNorm actually helps by smoothing the loss
- Zhang and Sennrich, 2019: propose RMSNorm which normalizes by root mean square. It's faster than LayerNorm and achieves comparable results

Low-resource: ScaleNorm

LayerNorm:
$$\bar{x}_i = \frac{x_i - \mu}{\sigma} a_i + b_i$$

RMSNorm:
$$\bar{x}_i = \frac{x_i}{\text{RMS}(x)} a_i$$
, RMS(x)

We propose **ScaleNorm:** $\bar{x} = g \frac{x}{\|x\|}$

Low-resource: ScaleNorm

ScaleNorm has no centering, no mean-shifting after scaling, 1 scale parameter per layer

Speed: ScaleNorm > RMSNorm > LayerNorm

improved low-resource NMT

- ScaleNorm is similar to FixNorm but on the inputs, not on the embedding

- ScaleNorm+FixNorm at final output layer = maximizing cosine distance
- Nguyen and Chiang (2018) used a fixed g for ScaleNorm+FixNorm which

	gl→en	∣sk→en	en→vi	en→he	ar→en	\mid average Δ
POSTNORM + LAYERNORM (published)	16.2	24.0	29.09	23.66	27.84	-4.05
POSTNORM + LAYERNORM (1) PRENORM + LAYERNORM (2)	18.47 19.09	29.37	31.94	27.85	33.39	+0.00
PRENORM + FIXNORM + LAYERNORM (3) PRENORM + FIXNORM + SCALENORM (4)	19.38 20.91 [‡] *	29.50 30.25 [‡] *	32.45 32.79*	28.39 28.44*	34.35 [†] 34.15*	+0.61 +1.10

Experiments

Average of 5 IWSLT tasks

IWSLT 2015 En-Vi

-5

Experiments

Average of 5 IWSLT tasks

Do we really need warmup?

Does the good old "decay when dev BLEU doesn't improve" still work?

Can we train low-resource on small batch sizes (4096 tokens/batch) with very high learning rate?

(we can often get away without warmup, but warmup is still useful)

Average of 5

Do we really need warmup? No!

Does the good old "decay when dev BLEU doesn't improve" still work? Yes!

Can we train low-resource on small batch sizes (4096 tokens/batch) with very high learning rate? Yes!

Experiments: PreNorm vs. PostNorm (again)

	4 layers	5 layers	6 layers
PostNorm	18.31	fails	fails
PreNorm	28.33	28.13	28.32

Table 5: Development BLEU on $en \rightarrow vi$ using NOWARMUP, as number of encoder/decoder layers increases.

Can SmallInit help PostNorm without warmup? No :(

High resource (a different story)

Published baseline PreNorm+LayerNorm 27.6 PreNorm+FixNorm+ScaleNorm PostNorm+LayerNorm

We use WMT 2014 en-de, via fairseq. PreNorm degrades performance!

High resource (a different story)

This could help solving the instability problem.

ScaleNorm + FixNorm achieves comparable results

ScaleNorm is faster than LayerNorm

(The PreNorm vs. PostNorm story is not finished!)

- High-resource often uses large batch size which has more stable gradients.
- We recommend always replacing LayerNorm with ScaleNorm+FixNorm

Analysis: Perfomance curves

Analysis: Gradients

Analysis: Learned g-values

 $\bar{x} = g \frac{x}{\|x\|}$

Value of g for attention layers in encoder/decoder

Value of g for non-attention layers in encoder/decoder

Analysis: Label smoothing

Conclusion

- We propose 3 changes to Transformer: PreNorm + FixNorm + ScaleNorm
- Significantly improves low-resource, Transformer-based NMT
- Comparable on high-resource NMT (FixNorm+ScaleNorm)
- Faster

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

https://paperswithcode.com/sota/machine-translation-on-iwslt2015-english-1

Questions?

paper: <u>https://arxiv.org/pdf/1910.05895.pdf</u> code: <u>https://github.com/tnq177/transformers_without_tears</u>

References

- 1. "Attention is all you need", Vaswani et al., 2017
- 2. "Adafactor: Adaptive Learning Rates with Sublinear Memory Cost", Shazeer and Stern, 2018
- 3. "Training tips for the Transformer model", Popel and Bojar, 2018
- 4. "The Best of Both Worlds: Combining Recent Advances in Neural Machine Translation", Chen et al., 2018
- 5. "Identity Mappings in Deep Residual Networks", He et al., 2016
- 6. "Learning Deep Transformer Models for Machine Translation", Wang et al., 2019
- 7. "On Layer Normalization in the Transformer architecture", Anonymous, 2019
- 8. "Stabilizing Transformers for Reinforcement Learning", Parisotto et al., 2019
- 9. "The Sockeye neural machine translation toolkit", Hieber et al., 2018
- 10. "Tensor2Tensor for Neural Machine Translation", Vaswani et al., 2018
- 11. "fairseq: A Fast, Extensible Toolkit for Sequence Modeling", Ott et al., 2019

References

- 12. "Improving Lexical Choice in Neural Machine Translation", Nguyen and Chiang, 2018
- "Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift", Ioffe and Szegedy, 2015
- 14. "How does batch normalization help optimization?", Santurkar et al., 2018
- 15. "Layer Normalization", Ba et al., 2016
- 16. "Root Mean Square Layer Normalization", Zhang and Sennrich, 2019
- 17. "Effective approaches to attention-based neural machine translation", Luong et al., 2015
- 18. "Deep Sparse Rectifier Neural Networks", Glorot et al., 2011
- 19. "Deep Residual Learning for Image Recognition", He et al., 2015
- 20. "Residual Networks Behave Like Ensembles of Relatively Shallow Networks", Veit et al., 2016
- "When and Why are pre-trained word embeddings useful for Neural Machine Translation", Qi et al.,
 2018