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Invariant representation learning (IRL) [1] 
expresses the inductive bias that a deep network’s 
intermediate representations should also exhibit 
invariance to noise. Per sample !, we create noisy 
samples "!#, … , "!&~ () and modify the objective to 
penalize the distance *+ between their intermediate 
activations ,+:

We take *+ to be a weighted sum of L2 and cosine 
distance (reduces degs. of freedom). We show IRL:
• can be interpreted from vicinal and structural 

risk minimization theory
• generalizes known stochastic and analytic 

regularizations for noise/adversarial robustness
• enables semi-supervised learning
• also applies to deep networks for computer 

vision and language modeling

Introduction

Figure 3. Normalized avg. cosine distance between x and x’

Figure 2. Normalized avg. L2 distance between x and x’ 

Figure 4. Jacobian norms per layer on the test set

Empirical risk minimization approximates -./0/:

Optimization in deep learning approximates ERM:

Vicinal risk minimization [2]: The estimate is 
improved by linear interpolation of 1) with a noise 
model ():

To mitigate catastrophic forgetting due to batching, 
this mix is interpolated with the 23 predicted by the 
model:

for which symmetrizing and supervising multiple 
layers corresponds to 4.560. This stochastic form 
generalizes stability training [4], adversarial training 
[5], and logit pairing [7], although at best they all 
supervise at the logit level.

Structural risk minimization: As in [3], assuming a 
Gaussian noise model "x = ! + ξ allows for analytic 
approximation. IRL and cross-entropy give:

where Σ = Cov ξ . This analytic form generalizes 
works like [3] which assume isotropy/diagonal Σ, or 
structural gradient regularization [6] which 
computes a running estimate.

Theory

We use IRL with Wide ResNet [8]. Their random crops, flips are applied before noising. We categorize noise into 
in-domain (brightness and contrast jitters, PCA noise), out-of-domain (hue and saturation jitters), adversarial
(via FGSM [5]). IRL improves 5-8% on the baseline trained in-domain, realized incrementally over data 
augmentation, IRL batching, and IRL loss. IRL also improves on regular and weighted adversarial training.

Computer Vision

For unlabeled data, one can continue viewing () as 
kernel density estimate of -./0/. Furthermore, [2] 
notes the model’s best estimate can be used to 
approximate the unknown 3. This gives

which corresponds to 4.560 as before.  Using the 
same CIFAR model and in-domain noise on 4,000 
labeled gives 21.5% and 60.7% test error. Semi-
supervised training with 4.560 on unlabeled samples 
improves this to 18.2% and 59.6% respectively.

Semi-Supervision

Our noise methods and baselines follow [9]; with 
probability @ = 0.2, replace context words with a 
unigram draw or a special blank token. Here, IRL 
loss uniquely improves over the baseline where 
augmentation and IRL batching do not.

Language Modeling

In our CIFAR models, data augmentation already 
induces nearby intermediate representations, 
further improved by IRL. As predicted, per-layer 
Jacobians are reduced, especially in the last four 
layers relative to augmentation and IRL batching.

Activations and Gradients

Our noise model is additive from MUSAN, as in [1]. 
Here we use WSJ, for which IRL training improves 
accuracy in three of five out-of-domain conditions.

Speech Recognition

Table 1. Perplexities of a two-layer, 1500 unit, word-level LSTM.

Table 3. Character errors of 4-4 Enc.-Dec. on WSJ on noise

Table 2. Test set error on Wide ResNet-28-10 model. We apply IRL loss on the last four blocks.

Figure 1. IRL loss with C = 1 for a sequence-to-sequence model.


