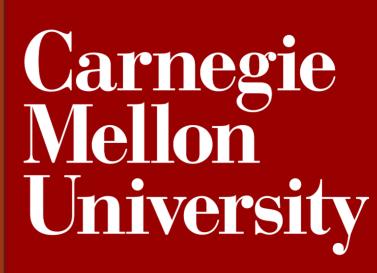


Invariant Representation Learning for Robust Deep Networks

Julian Salazar^{1,*} Davis Liang^{1,*} Zhiheng Huang¹ Zachary C. Lipton^{1,2} ¹Amazon Al ²Carnegie Mellon University *equal contribution Workshop on Integration of Deep Learning Theories, NeurIPS 2018



Introduction

Invariant representation learning (IRL) [1] expresses the inductive bias that a deep network's intermediate representations should also exhibit invariance to noise. Per sample x, we create noisy samples $\tilde{x}^1, ..., \tilde{x}^K \sim v_x$ and modify the objective to penalize the distance d_l between their intermediate activations a_l :

 $\mathcal{L}_{\mathrm{IRL}}(\boldsymbol{x}, y) = lpha \mathcal{L}(\boldsymbol{x}, y) + eta \mathcal{L}_{\mathrm{noise}}(\boldsymbol{x}, y) + \gamma \mathcal{L}_{\mathrm{dist}}(\boldsymbol{x})$ $\mathcal{L}_{\mathrm{noise}}(\boldsymbol{x}, y) = rac{1}{K} \sum_{k=1}^{K} \mathcal{L}(\tilde{\boldsymbol{x}}^{(k)}, y),$

Theory

Empirical risk minimization approximates P_{data} :

 $\hat{P}_{\text{data}} = \frac{1}{N} \sum_{i=1}^{N} (\delta_{\boldsymbol{x}^{(i)}} \times \delta_{y^{(i)}}),$

Optimization in deep learning approximates ERM: $R(\theta) \approx \int L(\mathbf{x}, \mathbf{y}; \theta) \, \mathrm{d}\hat{P}_{\mathrm{data}}(\mathbf{x}, \mathbf{y})$ $\approx \int \mathcal{L}(\mathbf{x}, \mathbf{y}; \theta) \, \mathrm{d}\hat{P}_{\mathrm{data}}(\mathbf{x}, \mathbf{y}) \approx \frac{1}{B} \sum_{b=1}^{B} \mathcal{L}(\boldsymbol{x}^{(b)}, y^{(b)}; \theta)$

Vicinal risk minimization [2]: The estimate is improved by linear interpolation of δ_x with a noise model v_x :

 $\int \mathcal{L}(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}) \, \mathrm{d}[\alpha \delta_{\boldsymbol{x}} + \beta \nu_{\boldsymbol{x}}](\mathbf{x}) \, \mathrm{d}\delta_{\boldsymbol{y}}(\mathbf{y}) \approx \alpha \mathcal{L}(\boldsymbol{x}, \boldsymbol{y}; \boldsymbol{\theta}) + \frac{\beta}{K} \sum_{i=1}^{K} \mathcal{L}(\tilde{\boldsymbol{x}}^{(k)}, \boldsymbol{y}; \boldsymbol{\theta})$

Semi-Supervision

For unlabeled data, one can continue viewing v_x as kernel density estimate of P_{data} . Furthermore, [2] notes the model's best estimate can be used to approximate the unknown y. This gives

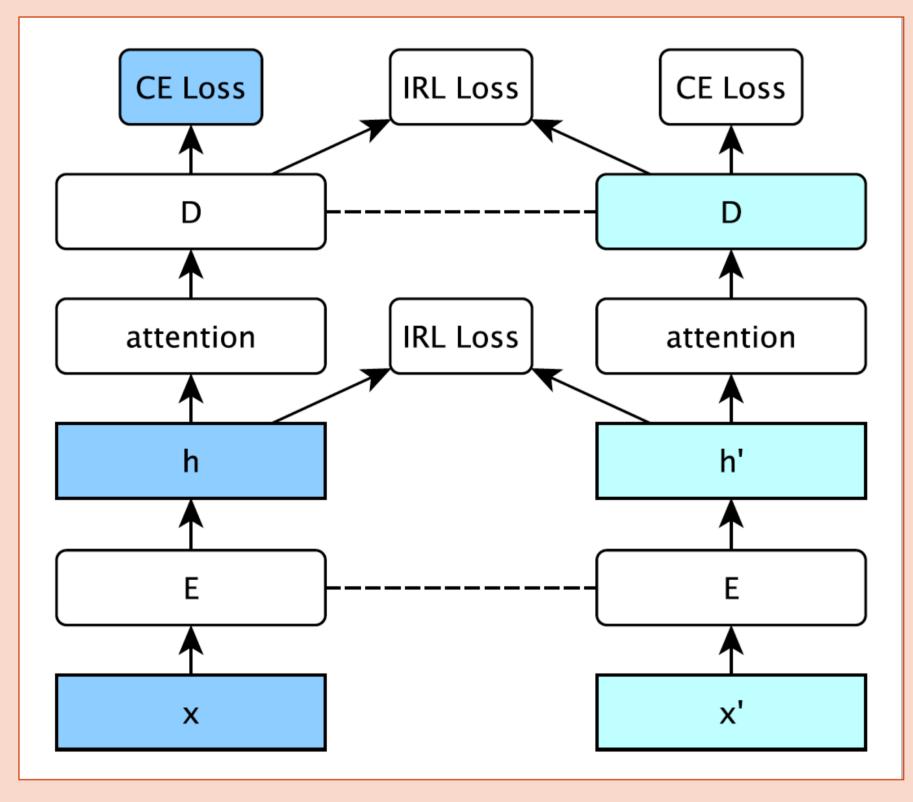
$\int \mathcal{L}(\mathbf{x}, f(\boldsymbol{x}; \boldsymbol{\theta}); \boldsymbol{\theta}) \, \mathrm{d} \nu_{\boldsymbol{x}}(\mathbf{x})$

which corresponds to L_{dist} as before. Using the same CIFAR model and in-domain noise on 4,000 labeled gives **21.5%** and **60.7%** test error. Semi-supervised training with L_{dist} on unlabeled samples

$\mathcal{L}_{ ext{dist}}(oldsymbol{x}) = \sum_{k=1}^{L} \gamma_\ell \; d_\ell(a_\ell(oldsymbol{x}), \{a_\ell(ilde{oldsymbol{x}}^{(k)})\}_{k=1}^K))$

We take d_l to be a weighted sum of L2 and cosine distance (reduces degs. of freedom). We show IRL:

- can be interpreted from vicinal and structural risk minimization theory
- generalizes known stochastic and analytic regularizations for noise/adversarial robustness
- enables semi-supervised learning
- also applies to deep networks for computer vision and language modeling



To mitigate catastrophic forgetting due to batching, this mix is interpolated with the \hat{y} predicted by the model:

 $\int (\mathcal{L}(\mathbf{x}, \mathbf{y}; \boldsymbol{\theta}) + \gamma \mathcal{L}(\mathbf{x}, f(\boldsymbol{x}; \boldsymbol{\theta}); \boldsymbol{\theta})) \, d\nu_{\boldsymbol{x}}(\mathbf{x}) \, d\delta_{\boldsymbol{y}}(\mathbf{y})$ $\approx \dots + \frac{\gamma}{K} \sum_{k=1}^{K} \mathcal{L}_{\text{c.e.}}(f(\tilde{\boldsymbol{x}}^{(k)}; \boldsymbol{\theta}), f(\boldsymbol{x}; \boldsymbol{\theta})),$ for which symmetrizing and supervising multiple

layers corresponds to L_{dist} . This stochastic form generalizes stability training [4], adversarial training [5], and logit pairing [7], although at best they all supervise at the logit level.

Structural risk minimization: As in [3], assuming a Gaussian noise model $\tilde{\mathbf{x}} = \mathbf{x} + \xi$ allows for analytic approximation. IRL and cross-entropy give: $\mathcal{L}_{IRL}(\mathbf{x}, y) \approx (\alpha + \beta)\mathcal{L}_{c.e.}(\mathbf{x}, y) + \beta\Omega_R + \gamma\Lambda_R,$ $1 \frac{J_L}{2}$

$$P_R = -\frac{1}{2} \sum_{j=1}^{L} y_j (\nabla_{\boldsymbol{x}} \log f_j(\boldsymbol{x}))^\top \boldsymbol{\Sigma} (\nabla_{\boldsymbol{x}} \log f_j(\boldsymbol{x})),$$
$$-\frac{L}{2} \sum_{j=1}^{L} \frac{J_\ell}{J_\ell}$$

 $\Lambda_R = \sum_{\ell=1} \gamma_\ell \sum_{j=1} (\nabla_{\boldsymbol{x}}(a_\ell)_j(\boldsymbol{x}))^\top \boldsymbol{\Sigma} (\nabla_{\boldsymbol{x}}(a_\ell)_j(\boldsymbol{x})),$

where $\Sigma = \text{Cov}(\xi)$. This analytic form generalizes works like [3] which assume isotropy/diagonal Σ , or structural gradient regularization [6] which computes a running estimate.

Table 1. Perplexities of a two-layer, 1500 unit, word-level LSTM.

improves this to **18.2%** and **59.6%** respectively.

Activations and Gradients

In our CIFAR models, data augmentation already induces nearby intermediate representations, further improved by IRL. As predicted, per-layer Jacobians are reduced, especially in the last four layers relative to augmentation and IRL batching.

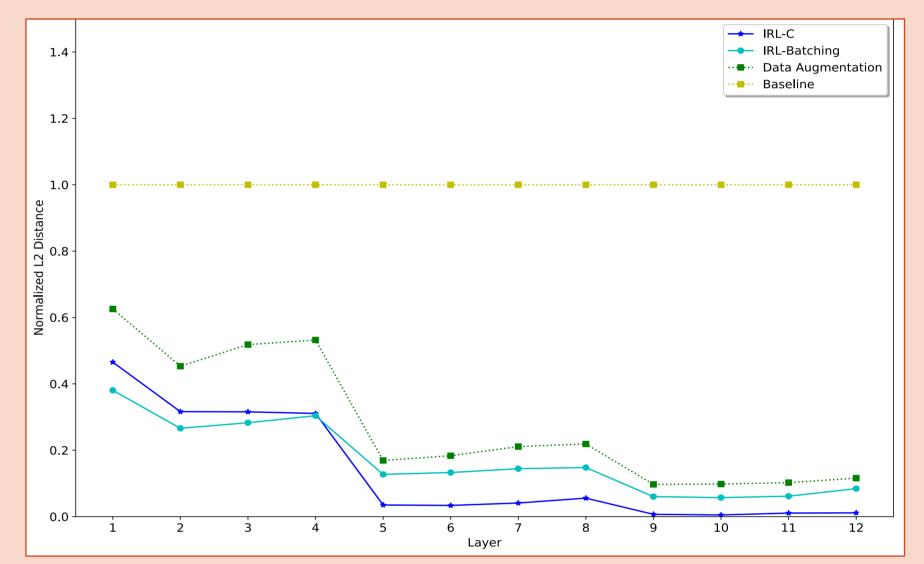


Figure 2. Normalized avg. L2 distance between *x* and *x'*

-*- IRL-C	
→→ IRL-C →→ IRL-Batching ···●·· Data Augmenta	- 11
·· = ·· Data Augmenta	ion 📗
·· ·· ·· Baseline	

Figure 1. IRL loss with K = 1 for a sequence-to-sequence model.

Language Modeling

Our noise methods and baselines follow [9]; with probability p = 0.2, replace context words with a **unigram** draw or a special **blank** token. Here, IRL loss uniquely improves over the baseline where augmentation and IRL batching do not.

		Р	TB	Wiki	iText-2				
Method	Noise	val.	test	val.	test				
Baseline (ours)	none none	$\begin{array}{c} 81.6\\ 80.5\end{array}$	$77.5 \\ 77.5$	-96.9	-92.1				
Data aug. IRL bat. IRL loss	uni. uni. uni.	$85.8 \\ 80.2 \\ 77.2$	$82.9 \\ 77.4 \\ 74.4$	$106.7 \\ 97.5 \\ 99.2$	$100.0 \\ 92.6 \\ 93.7$				
Data aug. IRL bat. IRL loss	blank blank blank	78.8 80.3 75.1	75.3 76.7 71.8	98.6 97.7 94.0	92.3 93.8 88.6				

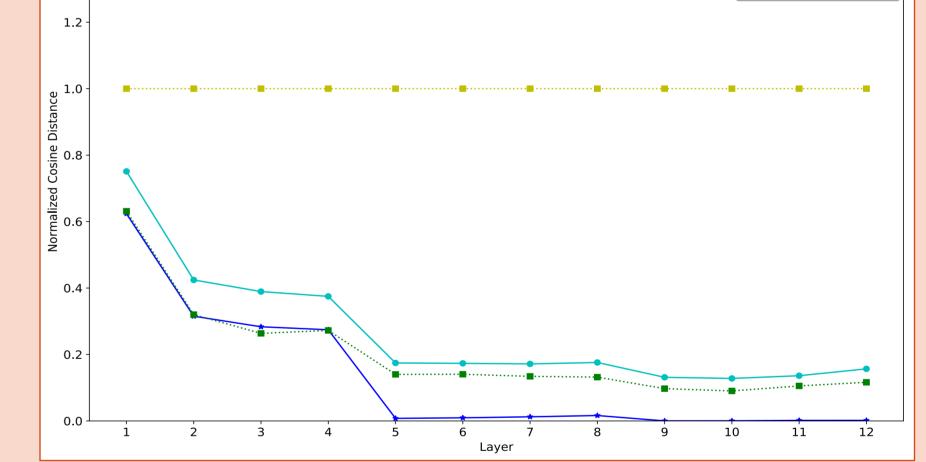


Figure 3. Normalized avg. cosine distance between x and x'

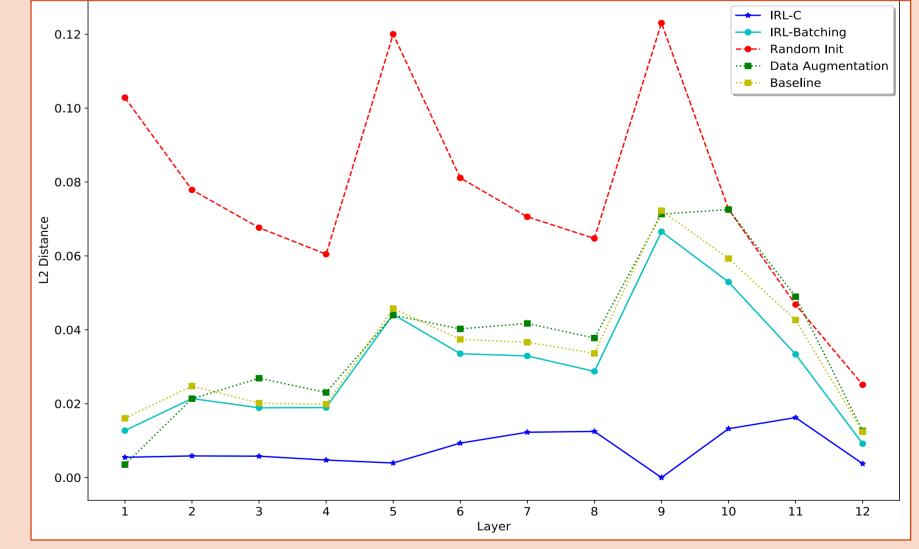


Figure 4. Jacobian norms per layer on the test set

Speech Recognition

Computer Vision

We use IRL with Wide ResNet [8]. Their random crops, flips are applied before noising. We categorize noise into **in-domain** (brightness and contrast jitters, PCA noise), **out-of-domain** (hue and saturation jitters), **adversarial** (via FGSM [5]). IRL improves **5-8%** on the baseline trained in-domain, realized incrementally over data augmentation, IRL batching, and IRL loss. IRL also improves on regular and weighted adversarial training.

 Table 2. Test set error on Wide ResNet-28-10 model. We apply IRL loss on the last four blocks.

			CIFAR-10					CIFAR-100					
$(lpha,eta,\gamma)$	Method	Noise	none	in.	out.	<i>ϵ</i> =0.2	<i>ϵ</i> =0.8	Noise	none	in.	out.	<i>ϵ</i> =0.1	<i>ϵ</i> =0.4
(1, 0, 0)	Baseline	std.	3.89	_	_	_	_		18.85	_	_	_	_
(1, 0, 0)	(ours)	std.	3.73	5.43	9.24	40.62	82.22		18.77	23.23	39.70	55.87	96.96
(0, 1, 0)	Data aug.	in.	3.79	4.67	9.48	42.58	86.19		18.68	20.33	38.69	57.57	96.88
(0.5, 0.5, 0)	IRL bat.	in.	3.66	4.55	9.50	42.94	86.98		18.30	20.18	38.54	57.60	97.57
$\left(0.5, 0.5, 1\right)$	IRL loss	in.	3.60	4.46	8.90	48.43	87.72		17.64	19.78	38.89	57.70	97.65
(0.5, 0.5, 0)	Adv. trn.	<i>ϵ</i> =0.4	4.92	7.74	9.42	4.79	69.51	<i>ϵ</i> =0.2	23.83	31.48	47.51	20.90	83.46
(0.8, 0.2, 0)	IRL bat.	<i>ϵ</i> =0.4	5.14	8.70	11.45	5.04	71.61	<i>ϵ</i> =0.2	20.52	25.60	39.85	21.06	80.40
(0.8, 0.2, 1)	IRL loss	<i>ϵ</i> =0.4	4.55	7.81	10.32	4.63	69.47	<i>ϵ</i> =0.2	22.49	28.84	45.20	20.26	88.63

References

- Liang, D., et al. (2018). Learning noiseinvariant representations for robust speech recognition. IEEE SLT
- 2. Chapelle, O., et al. (2001). Vicinal risk minimization. NeurIPS.
- Bishop, C. (1995). Training with noise is equivalent to Tikhonov regularization. Neural Computation.
- Zheng, S., et al (2016). Improving the robustness of deep neural networks via stability training. CVPR.
 - 5. Goodfellow, I., et al (2015). Explaining and harnessing adversarial examples. ICLR.
 - 6. Roth, K., et al (2018). Adversarially robust training through structured gradient regularization. ArXiv.
- 7. Kannan, H., et al (2018). Adversarial logit
 - pairing. ArXiv.
- 8. Zagoruyko, S. and Komodakis, N. (2016). Wide residual networks. BMVC
- 0 Via 7 at al (2017) Data pairing
- 9. Xie, Z., et al. (2017). Data noising as smoothing in neural network language
 - models. ICLR

Our noise model is additive from MUSAN, as in [1]. Here we use WSJ, for which IRL training improves accuracy in three of five out-of-domain conditions.

Table 3. Character errors of 4-4 Enc.-Dec. on WSJ on noise

	WSJ (eval92)						
Method	none	RIR	speech v.up	v.down tel.			
IRL bat.	13.0	45.9	83.5 29.7	28.0 70.029.4 64.7 30.073.0			

Julian Salazar Contact Amazon Al julsal@amazon.com