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Abstract

In this expository article, we start with Fermat’s method of infinite descent as
applied to the congruent number problem, and show how it is generalized by the
strategy of descent by 2-isogeny on elliptic curves over number fields. Along the way,
we examine Fermat’s original proof and reframe it as an argument of morphisms on
elliptic curves; we introduce Weil’s theory of heights to prove the Mordell-Weil the-
orem; and we use algebraic number theory to prove the weak Mordell-Weil theorem
and to see how rational 2-torsion makes the computation of E(K)/2E(K) sometimes
(but not always!) tractable.
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1 The method of infinite descent

Our story begins with a technique devised by Fermat in the 1600’s with regards to solving
Diophantine equations: the method of infinite descent. In Fermat’s letters to other math-
ematicians about his solutions to Diophantine problems, he would quite often reference
descent as one of his essential techniques. However, there exists only one written record
of Fermat explicitly working out a descent argument. It comes from the marginalia of
his copy of Diophantus’ Arithmetica, an edition that was published with commentary by
Bachet [2]. Via this example, we will motivate the later work of Mordell, Weil, and their
eponymous theorem.

1.1 Fermat’s right triangle theorem

The question that led to Fermat’s “marginal” proof was one of the problems Bachet posed
at the end of Diophantus’ book VI. Bachet asked which rational numbers are areas of right
triangles with rational sides. In modern parlance we call such possible areas congruent
numbers. Bachet’s question is known today as:

Question 1.1 (Congruent number problem). Which rational numbers are congruent num-
bers?

Fermat addresses the special case of asking whether there are square congruent num-
bers, that is, whether there are rational right triangles with square area. Fermat’s proof
of this proposition is historically notable, as it is the only truly detailed proof he ever
furnished with regards to number theory (appearing only in his personal notes, at that).
This has lead some authors to call it “Fermat’s one proof” [3].
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Figure 1: When does this occur for a,b,c,d ∈Q?
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1.1 Fermat’s right triangle theorem 1 THE METHOD OF INFINITE DESCENT

Theorem 1.2 (Right triangle theorem). There are no rational right triangles with square area.

Remark. Fermat boldly writes:

“Hoc nempè demonõrandi genus miros in arithmeticis suppeditabit progressus, si
area trianguli esset quadratus darentur duo quadratoquadrati quorum differentia
esset quadratus.”

The first phrase is Fermat stating that that his demonstration would enable “extraor-
dinary developments to be made in the theory of numbers” [4]. The second phrase begins
his proof, stating that if a rational right triangle with square area existed, it would give
two fourth-powers whose difference is a square; that is, a non-trivial solution (a solution
with no zeros) to the equation x4 − y4 = z2.

One deduces this as follows: it is well-known that we can scale a rational right trian-
gle to a similar primitive right triangle whose sides a,b,c are relatively prime and can be
written in terms of coprime m,n such that

a =m2 −n2, b = 2mn, c =m2 +n2,

wherem > n andm,n are not both odd (otherwise a,b,c are all even). Passing to a primitive
triangle preserves the condition of having a square area, as scaling the sides by λ ∈ Q

scales the area by λ2.
Either way, we want a rational d such that

d2 =
1
2
ab =mn(m2 −n2).

Therefore, in the case of the primitive triangle d is also an integer. The coprimality ofm,n
implies that the factors on the right are square. Therefore, there exist relatively prime
positive integers p,q, r such that

m = p2, n = q2, m2 −n2 = r2.

The last equation becomes

p4 − q4 = r2,

showing that (p,q, r) is a non-trivial solution to x4 − y4 = z2. To prove the theorem, it
suffices to show that no such solutions exist for this new equation, giving a contradiction.
To do this, Fermat performs “descent” on the equation.

Fermat’s proof (with details). If there were a rational right triangle with square area, then
x4−y4 = z2 would have a non-trivial primitive solution of positive integers (p,q, r) with p,q
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1.1 Fermat’s right triangle theorem 1 THE METHOD OF INFINITE DESCENT

coprime and of opposite parity. Factoring gives (p2 − q2)(p2 + q2) = r2. Since the factors
are also coprime, there exist coprime s, t with

p2 − q2 = s2, p2 + q2 = t2.

It follows that s, t are odd, and that t2 = s2 + 2q2. This gives( t + s
2

)( t − s
2

)
=

1
2
q2

where the factors on the left are also coprime. The left side is an integer, so q was even,
giving 4 | q2 and implying one of the coprime factors is also even. Dividing by 2 gives( t ± s

2

)( t ∓ s
4

)
=

(q
2

)2

where the choice of sign depends on which factor was originally even. Thus, there exist
odd coprime u,v with

t ± s
2

= u2,
t ∓ s

4
= v2.

Then ±s = u2 − 2v2, t = u2 + 2v2, and q = 2uv (take the square root of our factorization).
Finally,

p2 = q2 + s2 = (2uv)2 + (u2 − 2v2)2 = u4 + 4v4.

Thus, (u2,2v2,p) is a primitive right triangle as the sides are relatively prime, with an area
u2v2 that is square. By the Remark, such a triangle (via parameterization with coprime
m′ ,n′) induces another primitive solution (p′ ,q′ , r ′) to x4 − y4 = z2, where

p′ < p′4 + q′4 =m′2 +n′2 = p.

(where m′, n′ are defined as in the Remark). Therefore, repeating this entire procedure
produces a strictly decreasing sequence p > p′ > p′′ > · · · , which contradicts the well-
ordering principle (there is a least positive integer in the sequence). Thus, our original
assertion that x4 − y4 = z2 has a non-trivial solution is false, and we conclude there is no
rational right triangle with square area.

Interestingly, this proof is rarely reproduced as-is. It is often modified to directly
tackle the following corollary instead [3]:

Corollary 1.3 (Fermat’s Last Theorem, n = 4). There are no non-trivial integer solutions to

x4 + y4 = z4.

Proof. Suppose (a,b,c) were a non-trivial integer solution to x4 + y4 = z4. Then

a4 + b4 = c4 =⇒ c4 − b4 = (a2)2,

making (c,b,a2) a solution to x4 − y4 = z2 and contradicting Fermat’s right triangle theo-
rem.
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1.2 Points on elliptic curves 1 THE METHOD OF INFINITE DESCENT

1.2 Points on elliptic curves

It was Descartes and Fermat who pioneered the viewpoint of analytic geometry, and from
this perspective, one views rational solutions to the equation x4 − y4 = z2 as points on
that surface whose coordinates are in Q. However, it is more natural to view them as
curves in the 2-dimensional weighted projective space P

2
[1,1,2] with coordinates [x,y,z].

This identifies the non-zero triples of solutions that are the same up to weighted scaling;
for example, [1,0,1] ≡ [3,0,9] ∈ P2

[1,1,2].
Let us reconcile this with Fermat’s proof. Define

C =
{
[x,y,z] ∈ P2

[1,1,2] : x4 − y4 = z2
}
, Ĉ =

{
[x,y,z] ∈ P2

[1,1,2] : x4 + 4y4 = z2
}
.

We write C(K) and Ĉ(K) to restrict ourselves to equivalence classes of points arising from
when x,y,z ∈ K , where K is a number field. Fermat’s implicit appeal to a primitive so-
lution is the statement that for any [p,q, r] ∈ C(Q), there exist p∗,q∗, r∗ ∈ Z with p∗,q∗, r∗

coprime such that

[p,q, r] ≡ [p∗,q∗, r∗] ∈ C.

Thus, Fermat’s argument involves making a passage

[p,q, r] ∈ C // [u,v,p] ∈ Ĉ // [p′ ,q′ , r ′] ∈ C,

which he describes in terms of primitive solutions (p∗,q∗, r∗), (u∗,v∗,p∗), etc., that represent
these underlying equivalence classes in P

2
[1,1,2]. His argument is that one cannot keep

going from [p,q, r] to [p′ ,q′ , r ′] ad infinitum, as the coordinates of these primitive repre-
sentatives would get “too small.” This implies there were no such point [p,q, r] ∈ C to
begin with, giving the contradiction.

In fact, both C,Ĉ are elliptic curves. To see this, we dehomogenize their equations
(formally, we restrict to the open subvariety y , 0). This involves choosing a different
representative

[p,q, r] ≡
[
p

q
,1,

r

q2

]
∈ C,

which exists under the assumption q , 0. These representatives satisfy

x4 − 1 = z2, x4 + 4 = z2,

as can be seen by taking y = 1 in the equations of C,Ĉ respectively. One might already
recognize these as elliptic curves in Jacobi quartic form.

More convincingly, we can transform these curves to their more familiar Weierstrass
equations. Inspired by [5, §III.D], we take z 7→ z+ x2 to get

z2 + 2x2z+ 1 = 0, z2 − 2x2z − 4 = 0.
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1.2 Points on elliptic curves 1 THE METHOD OF INFINITE DESCENT

We now homogenize these equations as if we were in the y , 0 subvariety of a regular P
2

space. This gives

yz2 − 2x2z+ y3 = 0, yz2 − 2x2z − 4y3 = 0.

Dehomogenizing into the open subvariety where z , 0 gives

y − 2x2 + y3 = 0, y − 2x2 − 4y3 = 0.

Taking x 7→ 1
4y, y 7→ 1

2x, and multiplying the equations by 8 produces

y2 = x3 + 4x, y2 = −4(x3 − x).

Finally, working (without loss of generality) in complex projective space lets us take y 7→
2iy to turn the latter into y2 = x3 − x.

Let E, Ê denote the elliptic curves

E : y2 = x3 + 4x, Ê : y2 = x3 − x.

By our sequence of transformations, the non-trivial solutions on C,Ĉ give points on the
affine parts of E, Ê respectively. We get a schematic of the type

[p,q, r] ∈ C

��

// [u,v,p] ∈ Ĉ

��

// [p′ ,q′ , r ′] ∈ C

��

(a1, a2) ∈ E // (b1,b2) ∈ Ê // (a′1, a
′
2) ∈ E

where the dashed arrows represent indicate an implicit passage of points.

0 0.5 1 1.5 2 2.5 3

−5

0

5 (2,4)

(2,−4)

(0,0) E
−−−−→
←−−−−

Ê

−1 0 1 2 3

−4

−2

0

2

4

(−1,0) (1,0)(0,0)

Figure 2: The curves E and Ê drawn over R, along with some rational points
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If we trace our transformation from the equations of C to the equations of E, we get
the following maps:

[p,q, r] ∈ C 7−→ (a1, a2) =
(

2q2

p2 + r
,

4pq
p2 + r

)
∈ E,

(a1, a2) ∈ E 7−→ [p,q, r] ≡
[
a2,2a1,8a1 − a2

2

]
∈ C.

Likewise, for Ĉ and Ê we get:

[u,v,p] ∈ Ĉ 7−→ (b1,b2) =
(

2v2

u2 + p
,

8iuv
u2 + p

)
∈ Ê,

(b1,b2) ∈ Ê 7−→ [u,v,p] ≡
b2

2i
,2b1,8b1 −

(
b2

2i

)2 ∈ Ĉ.
Furthermore, if we correspond the base points [1,0,1] ∈ P2

[1,1,2] and [0,1,0] ∈ P2, and we

correspond the 2-torsion points [1,0,−1] ∈ P2
[1,1,2] and (0,0) = [0,0,1] ∈ P2, then our maps

extend to elliptic curve isomorphisms C � E and Ĉ � Ê.
We will now turn our schematic “backwards” with the following observation: When

we passed from [p,q, r] to [u,v,p] and so forth in Fermat’s proof, we always took positive
roots and defined our primitive solutions as accordingly, as this made sense in the context
of right triangles. However, from the viewpoint of passing between projective curves, this
was an arbitrary choice. For example, we could take [p,q, r] to [u,v,p] or [u,−v,p], where
the latter two are not equivalent in P

2
[1,1,2]

In this way, the passage C → Ĉ → C required, at each stage, a choice between two
points. (Note: this choice is distinct from choosing which of t±s

2 was even, which was
needed more for keeping the argument in the integers.) This suggests a more natural
viewpoint: each stage is actually a degree-2 map in the opposite direction. That is,

[p,q, r] ∈ C [u,v,p] ∈ Ĉ
ψ
oo [p′ ,q′ , r ′] ∈ C.

φ
oo

Fermat’s descent argument is actually passing from a point P to a point in its preimage
under these maps. The fact that φ,ψ are 2-isogenies can be verified by noting that these
opposite maps are describable as (weighted) homogeneous equations involving squares.

1.3 From infinite descent to Mordell-Weil

It is quite revealing to examine the net effect of these maps from the perspective of the
Weierstrass models. That is, let us explicitly write out the composite map:

(a′1, a
′
2) ∈ E ∼ // [p′ ,q′ , r ′] ∈ C

φ
// [u,v,p] ∈ Ĉ

ψ
// [p,q, r] ∈ C ∼ // (a1, a2) ∈ E,

7
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Using the substitutions from the previous sections, one gets:

a1 =
2q2

p2 + r
=

8u2v2

(u4 + 4v4)− (u2 − 2v4)(u2 + 2v4)
=
u2

v4 =
r ′2

p′2q′2

=
(8a′1 − a

′2
2 )2

(a′2)2(2a′1)2 =
(8a′1 − (a′31 + 4a1))2

(a′31 + 4a1)(2a′1)2
=

(4− a′21 )2

4(a′31 + 4a′1)

=
a′41 − 8a′21 + 16

4a′31 + 16a′1
.

This is the doubling formula for the x-coordinate of the Weierstrass model [5, §III.4]!
Solving for a2 in terms of a′1, a

′
2 will also give the doubling formula for the y-coordinate

of the Weierstrass model (which also gives y = ∞ at the appropriate points, namely the
2-torsion points a2 = 0). We conclude that

ψ ◦φ = [2]E ,

and therefore φ,ψ are dual 2-isogenies. This will be the last time we make reference to
Ĉ in this chapter; however, observe that we could have started with Ĉ and proceeded
accordingly. We will revisit the existence of this dual curve in Chapter 4.

This remarkable correspondence allows us to comprehensively view Fermat’s proof as
an argument on elliptic curves:

• Fermat’s passage from [p,q, r] ∈ C(Q) to [p′ ,q′ , r ′] ∈ C(Q) generalizes as going from a
point P ∈ E(K) to a specific choice (out of up to four) for 1

2P ∈ E(K), its preimage under
the ψ◦φ = [2]E map. This preimage is guaranteed to be non-empty if we were working
over C or Q. Fermat’s proof notes that working with non-trivial solutions suffices to
allow the passage for K = Q. From the elliptic curve viewpoint, the passage is fine as
long as P is not in E(K)/2E(K) (equivalence classes of points which are not “doubles”
of points in E(K)).

• Fermat notes that |p| ≥ |p′ | holds for primitive solutions (p,q, r) and (p′ ,q′ , r ′), with strict
inequality if the solutions are non-trivial. If one wanted to work over other number
fields K and arbitrary projective varieties, there exists a representative-independent
generalization known as the Weil height, which we shall encounter next chapter. For
now, it suffices to note that a “primitive representative” exists when working with
points over Q.

• The passage of P to 1
2P produces a sequence of points of decreasing “size”. When P is

non-trivial, then 1
2P is non-trivial and distinct from the rest of the sequence, as the de-

creasing is strict under this condition. However, given a constant K , only finitely many
points have “size” at most K (in this case, at most 2K + 1 points). Taking sizes is what
allows us to apply the well-ordering principle, which gives Fermat’s contradiction.

8
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In this way, Fermat essentially showed that non-trivial points on C(Q) do not exist.
What about trivial points? We can enumerate these by substituting x = 0, y = 0, and z = 0,
and from this one gets a finite number of possibilities:

• x = 0: This gives −y4 = z2, which has no solutions over Q.

• y = 0: This gives x4 = z2, which gives [1,0,1] and [1,0,−1] in C(Q).

• z = 0: This gives x4 − y4 = 0, which gives [1,1,0] and [1,−1,0] in C(Q).

In all, we conclude that

C(Q) = {O = [1,0,1] , [1,0,−1] , [1,1,0] , [1,−1,0]}.

Passing to E(Q), these points respectively become

E(Q) = {O = [0,1,0] , (0,0), (2,4), (2,−4)}.

Furthermore, the duplication formula (geometrically, taking the other intersection
point after drawing tangents on the Weierstrass curve, then reflecting over the x-axis)
shows that (2,4), (2,−4) ∈ E[4] map via [2]E to the 2-torsion point (0,0) ∈ E[2], which
maps via [2]E to the point at infinity, O.

(2,4)

(2,−4)

(0,0)

Figure 3: Torsion points in E(Q); tangents give the [2]E map from (2,±4) to (0,0)

If one further checks the additive structure, one concludes that

C(Q) � E(Q) �Z/4Z.

Where do the obstructions to a passage of the form P to 1
2P over Q occur? Taking the

quotient with 2E(Q) gives

E(Q)/2E(Q) �Z/2Z,
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2 HEIGHTS AND THE MORDELL-WEIL THEOREM

corresponding to the points (2,4), (2,−4), whose preimages under [2]E : E→ E do not have
rational coordinates.

To summarize: from Fermat’s perspective we have fully solved the Diophantine equa-
tion x4 − y4 = z2. From our perspective, we have fully solved for the variety E(Q) where
E : y2 = x3 + 4x. Where does one go from here? If one were Louis Mordell, one realizes
that Fermat’s technique is not intrinsic to the choice of elliptic curve equations x4−y4 = z2

or y2 = x3 + 4x. Rather, one can go further and make structural claims about the groups
E(Q)/2E(Q) and E(Q) in general via a similar strategy [6]. Furthermore, if one were André
Weil, one realizes that the “size” construction can be generalized to arbitrary number
fields K (and in fact, from elliptic curves to abelian varieties in general) [9], broadening
the scope of these structural results.

Here is how the remainder of the article will proceed:

• Chapter 2: We formalize the concept of a point’s “size” using the Weil height. Under the
assumption that E(K)/2E(K) is finite, we prove the Mordell-Weil theorem, which states
that E(K) is finitely generated.

• Chapter 3: Using concepts from algebraic number theory, we prove the weak Mordell-
Weil theorem, which states that E(K)/mE(K) for all m ≥ 2.

• Chapter 4: We overview the strategies of complete 2-descent and descent by 2-isogeny,
whereby one can explicitly solve for E(Q)/2E(Q) and thus E(Q) in some cases, via dual
curves like Ĉ.

As we finish this introductory chapter, recall that Fermat’s right triangle theorem is
just one special case of the congruent number problem, which remains unsolved. In-
terestingly, there is a result known as Tunnell’s theorem which can test whether a given
number is congruent; however, it assumes the famous unproven conjecture of Birch and
Swinnerton-Dyer, which relates the rank of E(K) (see Chapter 2) to a specific L-function
on E [8]. In all, the surprising relationship between areas of triangles and elliptic curves
is undergirded by correspondences between Diophantine equations and curves, like the
ones we saw here.

2 Heights and the Mordell-Weil theorem

In Fermat’s elliptic curve, we took integral representatives with relatively prime coordi-
nates and implicitly defined a well-defined “size” function

f ([x,y,z]) : C(Q)→Z≥0 ⊆R, [x,y,z] 7→ |x| ,

which we used to derive a contradiction regarding the structure of C(Q) ⊆ P
2
[1,1,2](Q), for

our choice of C (equivalently, E(Q) ⊆ P
2 for our choice of E). Specifically, we used it to

10



2.1 The descent theorem 2 HEIGHTS AND THE MORDELL-WEIL THEOREM

deduce that there is no infinitude of points in E(Q) when E : y2 = x3 +4x. We say that E(Q)
has rank 0 or is torsion. However, this is not true in general; the argument that worked
before might fail in general since the repeated passage of P to 1

2P could terminate at some
element of E(K)/2E(K) that does not represent a torsion point. This is a self-consistent
state of affairs that did not occur when E was Fermat’s curve.

The upside is that this suggests that representatives for E(K)/2E(K) can be used to
help generate all of E(K). This intuition is formalized by the descent theorem in the next
section. Of course, this is useful only if E(K) is a finitely generated abelian group. Our
ultimate goal is to prove the Mordell-Weil theorem, which asserts that this is case.

2.1 The descent theorem

There are certain properties that we would like to require of our “size” functions, to make
them useful in justifying the existence of a finite basis for E(K). The following axiomatic
treatment is based on [7, §VIII.3]:

Definition 2.1. An additive height function is a map h : A→ R from an abelian group A
satisfying the following properties:

a) For any Q ∈ A, there exists a dependent constant C1(Q) such that for all P ∈ A,

h(P +Q) ≤ 2h(P ) +C1.

b) There exists an integer m ≥ 2 and a constant C2 such that for all P ∈ A,

h(mP ) ≥m2h(P ) +C2.

c) For every constant C3, the set

{P ∈ A : h(P ) ≤ C3}

is finite.

It turns out that these properties suffice to ensure that the argument of finite-generation
that we want to make on A = E(K) by appealing to E(K)/2E(K) will succeed. Explicitly:

Proposition 2.2 (Descent theorem). Let h be an additive height function on A, and let m ∈Z
be the number for which Property (b) is satisfied. If the group A/mA is finite, then A is finitely
generated.

Proof. Let {Q1, . . . ,Qs} ∈ A represent the elements of A/mA. For arbitrary P ∈ A, we want
P ’s difference from some linear combination of Qi ’s to be the multiple of a point whose
height is smaller than an independent constant. Hence, every P would be linear depen-
dent on the Qi and the finitely many points with height less than the constant.

11



2.1 The descent theorem 2 HEIGHTS AND THE MORDELL-WEIL THEOREM

With this in mind, note that for any P ∈ A we can construct a sequence P = P0, P1, . . .
via

Pi−1 =mPi +Qji .

This gives an associated sequence of points Qj1 ,Qj2 , . . . . From this we get

h(Pi) ≤
h(mPi) +C2

m2 =
h(Pi−1 −Qj1) +C2

m2 ≤ 2h(Pi−1) + max1≤k≤sC1(Qk) +C2

m2

where the inequalities follow from Properties (b) and (a) respectively. Expanding the
recursive formula up to any n gives

P = P0 =mnPn +
n∑
i

mi−1Qji .

Repeated application of the inequality gives

h(Pn) ≤
( 2
m2

)n
h(P ) +

(
max
1≤k≤s

C1(Qk) +C2

) n∑
`=1

2`−1

m2`

<
( 2
m2

)n
h(P ) +

max1≤k≤sC1(Qk) +C2

m2 − 2

≤ 2−nh(P ) +
(

max
1≤k≤s

C1(Qk) +C2

)
,

since m ≥ 2. Then for large n,

h(Pn) ≤ 1 + max
1≤k≤s

C1(Qk) +C2.

From our formula for P0, we conclude that P is a linear combination of

{Q1, . . . ,Qs} ∪
{
Q ∈ A : h(Q) ≤ 1 + max

1≤k≤s
C1(Qk) +C2

}
.

The right-hand side of the inequality is independent of Q, so by property (c) this set is
finite. Hence, A is finitely generated.

Sadly, the function f is not the general additive height function we desire. After all,
the definition of being an additive height function encapsulates the properties that are
sufficient for the descent theorem to hold, not the necessary ones. Our hope is that there
exists a function similar to f , defined on A = E(K), which plays the “same role” but more
immediately so (by satisfying the axioms of an additive height function and making the
descent theorem applicable).

12



2.2 Weil heights 2 HEIGHTS AND THE MORDELL-WEIL THEOREM

2.2 Weil heights

To construct such a function, we begin by borrowing from f the same idea of passing to a
“primitive representative”. This gives a well-defined function from projective space over
Q to R:

Definition 2.3. The (Weil) height on P
n(Q) is given by

H
Q

: Pn(Q)→R, [x0, . . . ,xn] 7→ max
0≤i≤n

|xi | ,

which is well-defined upon passing to a “primitive representative”, i.e., taking

x0, . . . ,xn ∈Z, gcd(x0, . . . ,xn) = 1.

One views this as a type of generalization for f : taking the maximum over all the
coordinates instead of just the first makes H

Q
work more uniformly over all of rational

projective space, not just on some C(Q) where taking the primitive’s first coordinate hap-
pened to suffice.

How do we generalize this construction to an arbitrary number field K? Simply put,
the idea of looking for a ”primitive representative” falls apart when one loses unique fac-
torization. This encourages us to look for a more representative-independent approach.
Since we are hoping to define a “size”, our natural instinct is to look to the normalized
valuations introduced by passing to a (number) field extension. See [1, §2] for an intro-
duction to valuation theory, which gives the following concepts:

Definition 2.4. The normalized valuations on K , written MK , are the set of valuations
that restrict on Q to either the regular (archimedean) absolute value | |∞, or to one of the
(multiplicative, non-archimedean) p-adic valuations | |p.

Definition 2.5. Let v ∈MK . The completion of K with respect to v, written Kv , is given by
taking the completion of K as a metric space with respect to v. One verifies by continuity
that this is a field.

Definition 2.6. Let v ∈MK . The local degree at v is given by

nv = [Kv : Qv].

One verifies this is well-defined by proving that a number field K/Q induces the finite
field extension Kv/Qv .

With these definitions in hand, we can now define the following “size” function:

Definition 2.7. The Weil height on P
n(K) is given by

HK : Pn(K)→R, [x0, . . . ,xn] 7→
∏
v∈MK

(
max
0≤i≤n

v(xi)
)nv
.

13
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Homogeneous coordinates are equivalent under scaling by some λ. However, since MK is
the set of normalized valuations, the product formula from valuation theory gives∏

v∈MK

v(λ)nv = 1.

This implies that the Weil height is well-defined on P
n(K).

In a sense, the Weil height takes the maximum over all the coordinates, across the
valuations of K . This is similar to our definition forH

Q
, and in fact conservatively extends

it! To see why this and the earlier definition for H
Q

coincide, take P ∈ Pn(Q) and consider
a primitive representative as before, with x0, . . . ,xn ∈Z and gcd(x0, . . . ,xn) = 1.

If v ∈M
Q

we have v = | |p for some p, or v = | |∞. Since the coordinates are relatively
prime, no prime divides all the xi and hence max0≤i≤n v(xi) = 1 in the former case. The
latter case gives the

H
Q

(P ) = max
0≤i≤n

v(xi) = max
0≤i≤n

|xi |∞

definition that we saw earlier.
One more thing: in valuation theory, discrete valuations give us the choice of working

additively or multiplicatively. In defining the Weil height, we have chosen the multiplica-
tive convention for reasons of familiarity (e.g., the regular absolute value is multiplica-
tive). However, we will actually be using the additive version in our work:

Definition 2.8. The additive Weil height on P
n(K) is given by

hK (P ) = logHK (P ).

The reason we want this formulation is that our goal is to pass from the (additive) Weil
height to an additive height function on E(K). The properties chosen to characterize ad-
ditive height functions rely on the addition structure of R (hence the name). For example,
Property (a) compares h(P +Q) and 2h(P ), as opposed to comparing h(P +Q) and h(P )2.
The deeper reason for this choice is that under the additive formulation, h is “almost” a
quadratic form, which we will not explore here (cf. canonical height in [5, §IV.5]).

2.3 The Mordell-Weil theorem

Finally, from algebraic geometry or complex analysis, one recalls that a function f in the
function field of E/K naturally defines a surjection f : E � P

1 by assigning [1,0] to the
poles (and [f (P ),1] elsewhere). Using this notation, we can finally define our desired
function:

14
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Definition 2.9. The additive height on E (relative to K) is given by

hE(K)(P ) = hK (x(P ))

where x denotes the x-coordinate of P , as dependent on a choice of Weierstrass equation.

Unlike the Weil heights, this is not a canonically-defined function. However, it is at
least a function that can be easily evaluated (after choosing one’s equation). Proving that
hE(K) is an additive height function requires a number of non-trivial but elementary steps
[7, §VIII.5-6], which we summarize here:

• Properties (a) and (b): These follow from manipulating the Weierstrass equation, its
addition formula, the fact that x(P ) is an even function, and that morphisms do not
change the Weil height “too much.”

• Property (c): This follows from the Weil heights HK having the same property, i.e.,
height-bounded sets have finite cardinality. It is easy to see this for H

Q
, for which

#{P ∈ Pn(Q) :H
Q
≤ C} ≤ (2C + 1)n+1

is a bound. For general K , a technical argument is required. It involves viewing the
homogeneous coordinates of P as the coefficients of a polynomial, and then bounding
the height of P in terms of the heights of the polynomial’s roots.

We combine our results to prove the Mordell-Weil theorem, conditional on the weak
Mordell-Weil theorem in the next chapter:

Theorem 2.10 (Mordell-Weil theorem). The group E(K) is finitely generated.

Proof. Note that hE(K) is an additive height function for A = E(K) with m = 2. The weak
Mordell-Weil theorem, which we will prove in the next chapter, asserts that E(K)/2E(K)
is finite. By the descent theorem, E(K) is finitely generated.

Can we say anything more about E(K)? By the Mordell-Weil theorem, we can write

E(K) � Etors(K)×Zr .

where r is the rank of E(K). That is,

Definition 2.11. The rank of an elliptic curve over K is the dimension of the torsion-free
part of E(K).

Solving for the rank r is generally an intractable problem. However, we will see in the
next two chapters that working in E(K)/mE(K), especially with the case K = Q and m = 2,
can ultimately lead to effective results (in the same way it did for E : y2 = x3 + x).

15
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3 The weak Mordell-Weil theorem

In the previous chapter, we encountered the quotient group E(K)/mE(K) when we en-
coded Fermat’s infinite descent argument into the descent theorem. This led us to prove
the Mordell-Weil theorem, which is conditional on the following non-trivial result:

Theorem 3.1 (Weak Mordell-Weil theorem). Let E/K be an elliptic curve. The group E(K)/mE(K)
is finite.

Mordell’s 1922 proof used explicit formulas (namely, the group law on the Weierstrass
cubic) to specifically resolve the m = 2, K = Q case [6]. Instead, we will take advantage
of Kummer theory and global field theory (with ideas from cohomology hidden in the
background) to prove the more general result.

3.1 The Kummer pairing

The following approach is motivated by Kummer theory, which studies Kummer extensions
of K (a concise reference is [1, §III]). This is the situation where K contains the m-th roots
of unity for some m, and then one takes the field extension L/K whose Galois group is
abelian and whose elements’ orders dividem (i.e., GL/K has exponentm). These extensions
turn out to be exhausted by the extensions which adjoin m-th roots to K .

Notation 3.2. Let K denote the algebraic closure of K . Let K1/m denote K adjoined with
all its m-th roots in K .

In Kummer theory, there is a natural pairing

K× ×GK/K → µm, (a,σ ) 7→ m
√
a
σ
/ m
√
a.

which is independent of the choice of square root of a. If one takes the extension K1/m

of all m-th roots of K , checking the kernels on the left and right shows that one gets the
perfect bilinear pairing

K×/K×m ×GK1/m/K → µm, (a,σ )→ m
√
a
σ
/ m
√
a.

By perfect, we mean that the partial evaluation maps induced by fixing a term in one of
the factors are actually isomorphisms. For example, one gets the isomorphism

K×/K×m
∼−→Hom(GK/K ,µm),

which states that all homomorphisms GK/K → µm are of the form σ 7→ βσ /β, for some
β ∈ K× with βm ∈ K×. This is an instance of Hilbert’s Theorem 90, which generalizes this
result.

There is an analogous construct on elliptic curves. However, to define it we need to
assume that E[m] ⊆ E(K), in the same way that K needed to contain the m-th roots of
unity. Under this assumption, we make the following definition:
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Definition 3.3. The Kummer pairing is given by

κ : E(K)×GK/K → E[m], (P ,σ ) 7→Qσ −Q.

where Q ∈ E(K) satisfies P = [m]Q (i.e., P is the m-multiple of some Q in the algebraic
closure).

The difference with this new pairing, however, is that the kernel on the right will not
be GK/K1/m . The following, more restrictive extension will play the role of K1/m:

Notation 3.4. Let K† = K([m]−1E(K)) denote the extension that adjoins (the coordinates
of) all the points Q ∈ E(K) such that [m]Q ∈ E(K).

With this object defined, it turns out that our Kummer pairing has similar properties
to the original pairing from Kummer theory:

Proposition 3.5. The Kummer pairing κ is well-defined and bilinear. Its kernel on the left is
mE(K), and its kernel on the right is GK/K† .

Finally, why can we assume that E[m] ⊆ E(K)? This is because we can always take a
sufficiently large K and use the following result:

Lemma 3.6 (Reduction lemma). Let E/K be an elliptic curve and L/K a finite Galois exten-
sion. If E(L)/mE(L) is finite, then E(K)/mE(K) is finite.

Proofs for the Kummer pairing’s properties and this reduction lemma can be found in
[7, §VIII.1]. One could examine these proofs, or if one is familiar with Galois cohomology,
one could note that these proofs are just manual explications of properties of the Kummer
exact sequence. Either way, it follows that the induced pairing

E(K)/mE(K)×GK†/K → E[m]).

is perfect, which gives the isomorphism

δK† : E(K)/mE(K)
∼−→Hom(GK†/K ,E[m]).

This suggests the following strategy of proving the weak Mordell-Weil theorem: if
K†/K is finite, then since E[m] � µm × µm is finite, this isomorphism δK† lets us conclude
that E(K)/mE(K) is finite as well. However, the definition of K†/K is dependent on the
coordinates of E(K). Meanwhile, the extension of all m-th roots K1/m/K is certainly not
finite.

The ideal strategy involves taking an extension L/K that is guaranteed to extend K†/K ,
while remaining a finite extension. Then δK† would extend to the injection

δL : E(K)/mE(K)�Hom(GL/K ,E[m])

where the codomain is still finite.
The beauty of these δ-maps is that our work has now passed into the realm of algebraic

number theory (Galois groups of number field extensions), which we will now use to
construct an L with the desired properties.
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3.2 The role of algebraic number theory

We overview some results that should be familiar from a first course in class field theory.
The statements and their developments can be found in [1, §1-2]. K always denotes a
number field.

Definition 3.7. Let S be a finite set of (multiplicative) valuations that include the Archimedean
valuations. The ring of S-integers is

OK,S := {b ∈ K : v(b) ≥ 0 for all v ∈MK − S} ⊆ K.

The group of S-units are the multiplicative elements in the ring of S-integers:

O×K,S := {b ∈ K : v(b) = 0 for all v ∈MK − S} ⊆ K×.

Theorem 3.8 (Dirichlet S-unit theorem). The abelian group of S-units is finitely generated.
It is the direct sum of a finite cyclic group and a free abelian group of rank #S − 1.

Note that these are natural generalizations of more well-known results (taking S to
be trivial, i.e., strictly the Archimedean valuations, gives the regular ring of integers, the
regular units, and the regular Dirichlet unit theorem respectively).

Notation 3.9. We fix the following notation:

K(S,m) = {b ∈ K×/K×m : ordv(b) ≡ 0 (mod m) for all v ∈MK − S},

KS /K =

The maximal abelian extension of K with exponent

m which is unramified outside of S.

It turns out that for an appropriate choice of S, we will have L = KS as the extension
that let us complete the proof of the weak Mordell-Weil theorem. First, we show that
KS /K is finite. This hinges on the following lemma:

Lemma 3.10. If OK,S is a principal ideal domain (PID), then K(S,m) is finite.

Proof. Consider the group homomorphism

O×K,S → K(S,m)

induced by the quotient mapK×→ K×/K×m. To show it is a surjection, let b ∈ K× represent
an element of K(S,m). Then bOK,S is the m-th power of an ideal of OK,S . Since OK,S is a
PID, this implies bOK,S = rmOK,S . Hence b = urm for some S-unit u ∈ O×K,S . Modulo K×m,
a ≡ u and so u ∈ O×K,S gives b.

Furthermore, the kernel of the map containsO×mK,S , and so we get the further surjection

O×K,S /O
×m
K,S � K(S,m).

By Dirichlet’s S-unit theorem, we know that O×K,S is finitely generated, making the quo-
tient group finite. This surjection shows that K(S,m) is finite.
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Proposition 3.11. KS /K is a finite extension for all K .

Proof. We follow [7, VIII.1.6]:

• Let K ′/K be a finite extension, and suppose the proposition were true for K ′; that is,
K ′S

′
/K ′ is finite for S ′ (which here, we take to be the set of valuations that restrict to S).

Then KSK ′/K ′ is abelian with exponent m and unramified outside of S ′, which means
it is a finite extension. Hence KS /K is also finite. Thus, we can assume we are working
in a larger field where µm ⊆ K (this is analogous to the reduction lemma).

• Likewise, we can work with a larger S ′ ⊇ S, as this gives KS
′
/KS /K . Since the class

number of S is finite, we can add a finite number of elements to make a larger S ′

where OK,S ′ is a principal ideal domain. One could further enlarge S ′ so that v(m) = 0
for all v ∈MK − S ′.

• From Kummer theory, we know that KS
′

is a subfield of K1/m; in fact, it is the largest
one under the the constraint of being unramified outside of S ′. For v ∈MK − S ′, con-
siderXm−a = 0 over the local field Kv . Under the assumption v(m) = 0, then Kv( m

√
a)/Kv

is unramified exactly when ordv(b) ≡ 0 (mod m).

Hence

KS
′
= K({ m

√
a : a ∈ K(S ′ ,m)}).

Since K(S ′ ,m) is finite by our previous lemma, then KS
′
/K is a finite field extension and

so is our original KS /K .

3.3 Proof of the main result

We now pass back to the context of elliptic curves. Namely, we were working with E(K),
which gave us the associated, coordinate-dependent field extension K†/K . As outlined
earlier, our goal was to find a finite extension L containing K†. We finish by concluding
that KS /K†/K is always a tower of extensions; this follows from the following proposition:

Proposition 3.12. K†/K is an abelian extension with exponent m that is unramified outside
S, where

S = {v ∈MK : v is Archimedean, or E has bad reduction at v, or v(m) , 0}

is a finite set.

Having exponent m follows from our earlier perfect Kummer pairing, which gives the
isomorphism

GK†/K
∼−→Hom(E(K)/mE(K),E[m]).
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Regarding to being unramified on S, we have not yet discussed what is meant by a good
or a bad reduction. Let v ∈MK and call its uniformizer π. Given a minimal Weierstrass
equation, reduce the coefficients of E/K modulo π. If the resulting curve Ẽ/(K/πK) is
non-singular, we say E has good reduction at v. For us, it will suffice to say that almost all
v give good reductions, so we expect S to be finite. The full proof of our proposition can
be found in [7, VIII.1.5].

In all we must conclude that KS , being the maximal abelian extension with the same
property, extends K† as desired. We summarize our argument as follows:

Proof of weak Mordell-Weil. We want E(K)/mE(K) to be finite. Given K , the reduction
lemma shows it suffices to assume E[m] ⊆ E(K). Using this we constructed our Kummer
pairing on E(K), which gave the isomorphism E(K)/mE(K) � Hom(GK†/K ,E[m]). To show
finiteness, it sufficed to view this as a injection into a larger codomain Hom(GL/K ,E[m])
that is also finite. Choosing L = KS works, as we have shown it is also a finite extension.
Hence E(K)/mE(K) is finite by the isomorphism.

Moving forward, we now have the injection

δE : E(K)/mE(K)�Hom(GKS /K ,E[m]).

To conclude this chapter, we observe that our approach now gives us perspective to prove
some explicit results. For example:

Proposition 3.13 (Quantitative weak Mordell-Weil). Suppose E[m] ⊆ E(K) and let HK de-
note the ideal class group of K . Then

rk
Z/mZ

E(K)/mE(K) ≤ 2(#S + rk
Z/mZ

HK [m]).

Proof. This follows from examining our proof that KS /K is a finite extension for all K .
There, we constructed a larger set S ′ so that v(m) = 0 for all v ∈MK −S ′. To ensure this, we
needed to add the rk

Z/mZ
HK [m] generators of HK [m] to S. We have the further injection

E(K)/mE(K)�Hom(GKS /K ,E[m])�Hom(GKS′ /K ,E[m]).

Take the Z/mZ-rank of the domain and the codomain. To do this, recall that E[m] �
(Z/mZ)2. Finally, Dirichlet’s S-unit theorem states that O×K,S ′ has Z-rank S ′ −1. However,
the finite cyclic group gives us a Z/mZ-rank of S ′ for the quotient O×K,S ′ /O

×m
K,S ′ . Hence

rk
Z/mZ

E(K)/mE(K) ≤ (rk
Z/mZ

E[m]) · (1 + (#S ′ − 1)) = 2(#S + rk
Z/mZ

HK [m])

as desired.

A result like this can be elevated to bounds on the rank of E(K) itself in some cases.
For example [5, IV.4.19]:
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Theorem 3.14. Suppose E(Q) has full 2-torsion (its Weierstrass equation has integer roots
r1, r2, r3). Then the rank r of E(Q) is bounded by

r ≤ n1 + 2n2 − 1,

where n1 is the number of primes dividing one of r1− r2, r2− r3, r3− r1, and n2 is the number of
primes dividing all of these differences.

4 Computing E(K)/2E(K)

From Kummer theory, we saw that

K×/K×m
∼−→Hom(GK/K ,µm),

is an isomorphism. Hidden inside this is the restricted isomorphism

K(S,m)
∼−→Hom(GKS /K ,µm).

Finally, since E[m] � µm × µm, we can compose with the injection from the end of last
chapter to conclude there exists an injection

E(K)/mE(K)�Hom(GKS /K ,E[m]) � K(S,m)×K(S,m),

where the latter isomorphism is fixed by a choice of generators T1,T2 for E[m] as a module.
If the injection is specified by a pair of functions fT1

, fT2
, then to see if a point

(b1,b2) ∈ K(S,m)×K(S,m) ⊆ K×/K×m ×K×/K×m

originates from E(K)/mE(K), then we want to solve

b1z
m
1 = fT1

(P ), b2z
m
2 = fT2

(P )

for z1, z2 ∈ K× and P ∈ E(K).
While we have shown that an injection into K(S,m) ×K(S,m) exists for all m (under

the assumption E[m] ⊆ E(K)), the case m = 2 in conjunction with a Weierstrass equation
is particularly special. To see why, note that we can always factor the right side over K as

E/K : y2 = (x − r1)(x − r2)(x − r3),

with no repeated roots (as that would imply a singular point). Recalling the group law, it
is clear that (r1,0), (r2,0), (r3,0) ∈ E[2]. Since the point at infinityO ∈ E[2] as well, it follows
that we have exhausted the points in E[2] � µ2 ×µ2. Therefore, as long as E[2] ⊆ E(K), we
must have r1, r2, r3 ∈ K .
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4.1 Complete 2-descent

This explicit description of the 2-torsion points as coordinates is encouraging with respect
to deducing a formula for the injection. In the notation of the previous section, it turns out
that taking T1 = (r1,0), T2 = (r2,0), and defining fTi (P ) = x(P ) − ri describes the following
choice of injection:

Proposition 4.1 (Complete 2-descent). The map

δ : E(K)/2E(K)→ K(S,2)×K(S,2)

given by

(x,y) 7→


(x − r1,x − r2) if x , r1, r2(
r1−r3
r1−r2 , r1 − r2

)
if x = r1(

r2 − r1,
r2−r3
r2−r1

)
if x = r2

(1,1) if x =∞ (i.e., P = O)

is an injective homomorphism.

This is an exercise in algebraic manipulation [7, X.1.4]. Ultimately, this suggests the
following strategy of solving for E(K)/2E(K):

• By factoring the discriminant ∆, one can deduce S and thus K(S,2).

• One then examines the possible tuples (b1,b2) ∈ K(S,2) ×K(S,2) and asks which ones
have a preimage in E(K)/2E(K).

• This is done by solving the system of equations

b1z
m
1 = fT1

(P ), b2z
m
2 = fT2

(P )

under the constraint of being in E(K) (a third equation).

• These determine a variety known as a principal homogeneous space.

• Finding a K-rational point on this variety is possible as long as the Hasse principle
holds (i.e., finding Kv-rational points over all v gives a K-rational point).

• However, this is not always true. Here, objects like the Selmer group and the Tate-
Shafarevich group come into play to quantify the “extent” to which the Hasse principle
fails.
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Does this suffice to tackle the case of E : y2 = x3 + 4x that we saw in the first chapter?
Somewhat. Over Q, we have

E/Q : y2 = x(x2 + 4)

as the best factorization available to us (hence E(Q)[2] � Z/2Z only). Of course, passing
to the extension Q(i)/Q gives

E/Q(i) : y2 = x(x − 2i)(x+ 2i)

and therefore we get E[2] ⊆ E(Q(i)). While rather unnatural, one could prove Fermat’s
theorem by proving that E(Q(i)) has rank 0 in this manner (enumerating the elements of
E(K)/2E(K) using the procedure outlined above) and showing they are torsion). However,
having to pass to a splitting field is in general, a losing proposition.

4.2 Descent by 2-isogeny: Fermat revisited

If we recall our elliptic curve “translation” of Fermat’s right triangle proof, note that we
observed the back-and-forth passage between

E : y2 = x3 + 4x, Ê : y2 = x3 − x

via dual 2-isogenies φ and ψ. Although we had collapsed the two maps into ψ ◦φ = [2]E
and used that to prove E(Q) is finite, imagine if instead we had collapsed the maps as
φ◦ψ = [2]Ê and proceeded thusly. Certainly, we would have reached the same conclusion
of finiteness for Ê(Q), and then E(Q) again. The difference is that here, Ê does split over
Q as x3 − x = x(x − 1)(x + 1), saving us work when applying techniques like complete 2-
descent.

Motivated by this final revisit of Fermat’s proof, it turns out that the strategy of com-
plete 2-descent can actually be viewed as a specialization of the more general strategy
known as descent by 2-isogeny. The idea is that in some cases, the multiplication isogeny

E(K)
[2]
−−→ E(K)

implicit in the complete 2-descent nicely decomposes into

E(K)
φ
−−→ Ê(K)

φ̂
−−→ E(K)

where φ̂ ◦φ = [2]E , i.e., into the composition of some 2-isogeny φ and its dual.
Before, the object of interest was E(K)/2E(K), which we can think of as the coker-

nel of the [2]E isogeny. Now, the objects of interest are the cokernels Ê(K)/φ(E(K)) and
E(K)/φ̂(E(K)).
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This time, we have two injective homomorphisms (they decompose the single injective
homomorphism into K(S,2)×K(S,2) that occurred in the E(K)/2E(K) case):

δ : Ê(K)/φ(E(K))→ K(S,2),

δ̂ : E(K)/φ̂(Ê(K))→ K(S,2).

How does this connect back to our original goal of solving for E(K)/2E(K)? What
happens now is similar to the complete 2-descent case. If one did have a curve E, since we
are working with 2-torsion points, we hope that we can transform E to some Weierstrass
equation that is obviously 2-isogenous to some other curve Ê, such that both δ and δ̂ have
explicit formulas as well!

This seems implausible at first glance, but it turns out that the assumption E(K)[2] , ∅
gives a sufficient restriction for this happen. Then, we can transform E to an equivalent
model where one of the 2-torsion points is at (0,0). Hence we can assume E has the
equation

E : y2 = x3 + ax2 + bx.

One can verify that

Proposition 4.2. Let E : y2 = x3 + ax2 + bx. Then the curve

Ê : y2 = x3 + âx2 + b̂x

with â = −2a and b̂ = a2 − 4b is 2-isogenous with E via the dual isogenies

φ : E→ Ê, (x,y) 7→
(
y2

x2 ,
y(b − x2)
x2

)
φ̂ : Ê→ E, (x,y) 7→

(
y2

4x2 ,
y(b − x2)

8x2

)
.

This gives the two 2-isogenous curves. The injections look like, e.g.,

δ : Ê(K)/φ(E(K))→ K(S,2), (x,y) 7→


a2 − 4b if x = 0 (i.e., P = (0,0))

1 if x =∞ (i.e., P = O)

x otherwise.

Once more, one retrieves a similar strategy: examine the discriminant ∆ to deduce
S and thus the two copies of K(S,2). One then tries to solve for which points have a
preimage in Ê(K)/φ(E(K)) (or E(K)/φ̂(Ê(K)) as appropriate). Again, this requires checking
whether the principal homogeneous spaces that arise have K-rational points, which may
not always be possible.
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As a final note, take E as above with a = 0 and b = 4. Then Ê has coefficients â = 0 and
b̂ = −16. Hence

E : y2 = x3 + 4x, Ê : y2 = x3 − 16x

are 2-isogenous curves with isogenies and injections described as above. A projective
transformation x 7→ 4x and y 7→ 8y shows that without loss of generality, Ê : y2 = x3 − x.
Hence E, Ê are our original pair of curves in Chapter 1.

In this method of descent by 2-isogeny, we find a computational generalization of Fer-
mat’s proof of the right triangle theorem. Along the way we encountered plenty of 20th-
century mathematics, via heights, Mordell and Weil, glimpses of cohomology, and hints
of unsolved mathematical problems. They all arise from this bridge that we have built
from Fermat’s world into the contemporary study of elliptic curves.

“Extraordinary developments,” indeed.
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